To guard against terrorism, the Pentagon looks to image-recognition technology

Karee Swift (karee@tstonramp.com)
Mon, 6 Dec 1999 12:21:03 -0800


This is a multi-part message in MIME format.

------=_NextPart_000_0073_01BF3FE4.5CDDDB00
Content-Type: multipart/alternative;
boundary="----=_NextPart_001_0074_01BF3FE4.5CDDDB00"

------=_NextPart_001_0074_01BF3FE4.5CDDDB00
Content-Type: text/plain;
charset="iso-8859-1"
Content-Transfer-Encoding: quoted-printable

Freaky freaky stuff here. =20

http://www.sciam.com/1999/1299issue/1299techbus5.html

=20

........... Defense Technology=20
SEEN BEFORE
To guard against terrorism, the Pentagon looks to =
image-recognition technology=20

=20
In the East London borough of Newham, a surveillance network =
of more than 200 cameras keeps watch on pedestrians and passersby, =
employing a facial-recognition system that can automatically pick out =
known criminals and alert local authorities to their presence. Not =
surprisingly, civil liberties groups oppose the system--Privacy =
International, a human-rights group, gave the Newham council a "Big =
Brother" award last year on the 50th anniversary of the publication of =
George Orwell's famous novel. The council, however, claims overwhelming =
support from citizens who are more concerned about crime than about =
government intrusions. It could count as one of its supporters the U.S. =
Department of Defense, which is keeping tabs on the Newham system as =
well as on other, related technologies. The department hopes that some =
combination of "biometrics" will vastly improve its ability to protect =
its facilities worldwide.=20

For the military, biometrics usually means technologies that =
can identify computer users by recognizing their fingerprints or voices =
or by scanning their irises or retinas. But after a terrorist truck bomb =
blew up the Khobar Towers U.S. military barracks in Saudi Arabia in =
1996, killing 19, the Pentagon elevated to the top of its priority list =
the need for "force protection"--namely, keeping troops abroad safe from =
attack. That spurred the Defense Advanced Research Projects Agency, =
essentially a Pentagon hobby shop, to action. Building on some ongoing =
work with video surveillance and modeling techniques, as well as on =
commercial (but still experimental) technologies such as those used to =
identify automatic-teller machine customers by scanning their faces, =
DARPA set out to investigate the potential for a network of biometric =
sensors to monitor the outsides of military facilities.=20

The result is a program known as Image Understanding for =
Force Protection (IUFP), which the agency hopes to get started in 2001. =
Described by the Pentagon as "an aggressive research and development =
effort," IUFP is supposed to improve site surveillance capabilities by =
"creating new technologies for identifying humans at a distance."=20

Biometric systems in use with ATM machines and computers =
have two advantages over what DARPA has in mind: proximity and =
cooperation. For military purposes, biometric sensors and networks must =
be able to "see" and identify subjects from distances of between 100 and =
500 feet--subjects who probably don't want to be identified. In =
addition, they must be capable of picking faces out of crowds in urban =
environments, keeping track of repeat visitors who, according to DARPA's =
George Lukes, "might be casing the joint," and alerting users to the =
presence of known or suspected terrorists. Databases could even be =
shared by different facilities, informing security officials, for =
example, that the same person is showing up repeatedly near different =
potential targets.=20

The software behind Newham's anticrime system that has drawn =
DARPA interest is called FaceIt, from New Jersey=C7based Visionics =
Corporation. FaceIt scans the visages of people and searches for matches =
in a video library of known criminals. When the system spots one of =
those faces, the authorities are contacted. A military version might =
work the same way. Over the past year, according to a DARPA document =
recently sent to Congress, "several new technical approaches have been =
identified" that could provide improved face recognition at longer =
distances, as well as extend the range of iris-recognition systems.=20

DARPA believes, however, that combining several types of =
technologies could form a network that is more capable than a single =
system. New concepts it is exploring include the thermal signature of =
the blood vessels in the head, which some researchers suspect is as =
unique to a person as his or her fingerprints; the shape of a person's =
ear; and even "the kinetics of their gait," in DARPA's words. "There are =
some unique characteristics to how people move that allow you to =
recognize them," explains DARPA's David Gunning. After conducting a =
"thorough analysis" of existing technologies, the agency says it is =
"ready to begin immediately with the new developments." The Pentagon =
hopes to spend $11.7 million in 2000 on the IUFP program--a good deal of =
money for a DARPA effort.=20

The potential for an integrated network of identification =
techniques has understandably generated significant interest among =
defense and intelligence agencies that are prime targets for terrorists. =
"There's a lot of enthusiasm," Gunning says--after all, through the =
marriage of recognition systems and surveillance technologies, DARPA =
thinks it has a handle on how to keep track of "one of the few =
detectable precursors" to terrorist attacks.=20

=20
--Daniel G. Dupont=20

=20
=20

-------------------------------------------------------------------- =
=20
DANIEL G. DUPONT is the editor of Inside the Pentagon in =
Washington, D.C. He described unmanned aerial vehicles in the September =
issue. =20

------=_NextPart_001_0074_01BF3FE4.5CDDDB00
Content-Type: text/html;
charset="iso-8859-1"
Content-Transfer-Encoding: quoted-printable

<!DOCTYPE HTML PUBLIC "-//W3C//DTD W3 HTML//EN">

Freaky freaky stuff here.  =
 
http://www= .sciam.com/1999/1299issue/1299techbus5.html
 


........... Defense = Technology=20

SEEN BEFORE

To guard against terrorism, the Pentagon looks to=20 image-recognition technology


In the East=20 London borough of Newham, a surveillance network of more = than=20 200 cameras keeps watch on pedestrians and passersby, = employing a facia= l-recognition=20 system that can automatically pick out known criminals = and alert=20 local authorities to their presence. Not surprisingly, civil = liberties groups oppose the system--Privacy = International, a=20 human-rights group, gave the Newham council a "Big = Brother"=20 award last year on the 50th anniversary of the publication = of George=20 Orwell's famous novel. The council, however, claims = overwhelming=20 support from citizens who are more concerned about crime = than about=20 government intrusions. It could count as one of its = supporters the=20 U.S. Department of Defense, which is keeping tabs on the = Newham=20 system as well as on other, related technologies. The = department=20 hopes that some combination of "biometrics" will = vastly=20 improve its ability to protect its facilities worldwide.=20

For the military, biometrics usually means technologies = that can=20 identify computer users by recognizing their fingerprints or = voices=20 or by scanning their irises or retinas. But after a = terrorist truck=20 bomb blew up the Khobar Towers U.S. military barracks in = Saudi=20 Arabia in 1996, killing 19, the Pentagon elevated to the top = of its=20 priority list the need for "force = protection"--namely,=20 keeping troops abroad safe from attack. That spurred the Defense Advanced = Research=20 Projects Agency, essentially a Pentagon hobby shop, to = action.=20 Building on some ongoing work with video surveillance and = modeling=20 techniques, as well as on commercial (but still = experimental)=20 technologies such as those used to identify automatic-teller = machine=20 customers by scanning their faces, DARPA set out to = investigate the=20 potential for a network of biometric sensors to monitor the = outsides=20 of military facilities.=20

The result is a program known as Image Understanding for = Force=20 Protection (IUFP), which the agency hopes to get started = in=20 2001. Described by the Pentagon as "an aggressive = research and=20 development effort," IUFP is supposed to improve site=20 surveillance capabilities by "creating new technologies = for=20 identifying humans at a distance."=20

Biometric systems in use with ATM machines and computers = have two=20 advantages over what DARPA has in mind: proximity and = cooperation.=20 For military purposes, biometric sensors and networks must = be able=20 to "see" and identify subjects from distances of = between=20 100 and 500 feet--subjects who probably don't want to be = identified.=20 In addition, they must be capable of picking faces out of = crowds in=20 urban environments, keeping track of repeat visitors who, = according=20 to DARPA's George=20 Lukes, "might be casing the joint," and = alerting users=20 to the presence of known or suspected terrorists. Databases = could=20 even be shared by different facilities, informing security=20 officials, for example, that the same person is showing up=20 repeatedly near different potential targets.=20

The software behind Newham's anticrime system that has = drawn=20 DARPA interest is called FaceIt, from New=20 JerseyÇbased Visionics Corporation. FaceIt scans the = visages=20 of people and searches for matches in a video library of = known=20 criminals. When the system spots one of those faces, the = authorities=20 are contacted. A military version might work the same way. = Over the=20 past year, according to a DARPA document recently sent to = Congress,=20 "several new technical approaches have been = identified"=20 that could provide improved face recognition at longer = distances, as=20 well as extend the range of iris-recognition systems.=20

DARPA believes, however, that combining several types of=20 technologies could form a network that is more capable than = a single=20 system. New concepts it is exploring include the thermal = signature=20 of the blood vessels in the head, which some researchers = suspect is=20 as unique to a person as his or her fingerprints; the shape = of a=20 person's ear; and even "the kinetics of their = gait," in=20 DARPA's words. "There are some unique characteristics = to how=20 people move that allow you to recognize them," explains = DARPA's=20 David=20 Gunning. After conducting a "thorough = analysis" of=20 existing technologies, the agency says it is "ready to = begin=20 immediately with the new developments." The Pentagon = hopes to=20 spend $11.7 million in 2000 on the IUFP program--a good deal = of=20 money for a DARPA effort.=20

The potential for an integrated network of identification = techniques has understandably generated significant interest = among=20 defense and intelligence agencies that are prime targets for = terrorists. "There's a lot of enthusiasm," Gunning = says--after all, through the marriage of recognition systems = and=20 surveillance technologies, DARPA thinks it has a handle on = how to=20 keep track of "one of the few detectable = precursors" to=20 terrorist attacks.=20


--Daniel G. Dupont=20



DANIEL G. DUPONT is the editor of Inside the Pentagon = in=20 Washington, D.C. He described unmanned aerial vehicles in = the=20 September issue. =
------=_NextPart_001_0074_01BF3FE4.5CDDDB00-- ------=_NextPart_000_0073_01BF3FE4.5CDDDB00 Content-Type: image/gif Content-Transfer-Encoding: base64 Content-ID: <006701bf4027$6abdf780$39c9c380@Illuminati.keyway.net> R0lGODlh9wF8APcAAAQELAQEJAQEHAQEFAwMJAwMHAwMFCQkNCwsPFxcdCQkLCwsMvT0/Ozs88TE xQQHOtTV68XH2yQsZNfc9AQMLHZ8lIaMpLa81MbM5JWctKWsxLS5zOHn/AQMJBgkSRUdOCQsRhQW HJabqqarugQbXwQXTxwxaWRrfmxzhqy0yrzE2yxBdyc5ZCk3WYyUqJykuYWLmhotVzU7SE1UY1Vc a3R7i8zV6gQMHDxZkSQsPCw0RBgcJFxkdAQsdAQpaUZkmlR0rGR5nzxEUkRMW3uFl1BwpAQZNzNT hFyAtAcpWAQJEFx+rG+MtXeWvoajyXR3ewQ4d0hgfhRMjAwUHRonNpu10+zy+QZMlAQlRwxUnBwk LCQsNCw0PARDgAZLjAU4aAxUlBRclxRWixxjnARUlAxcnAxUjAQYJx5hlARcnARUjAxclBRknBhs pBhTewRclARRgQY4WAxknAxcjBRklBxsnDV7pwRknARcjApspAxklBRsnBVMayZ8rCRwnUWMtARk lAVLcAxsnAYnOBt1pCZ5pFWUs2acuARsnCyKtDeMtBg5SEaLrAx5pQY2Shh2nCqFqxlEVjaIq0mY t1acubnX5LXM1d/k5gRslARegQVmigxskWirxHWswQd2mQZJYAyMtA1ifxWMtAQUGTqWtFqlvmen uxaJqB5qgXm2xwqIqAyUtQldcgYkKxV4kYi8yajL1Al1ixaZtyBdazJ1hDFodEiYqZjEzgyUqwyF mx6pwCmftjiXpydRWBeYqgo1O0aAiCCGkiibqjS2x07CzgwcHhg1OLnW2TeqtTKNlUq2v2i3vx95 f2TM01yTllqFiKbKzMfa23abnAQcHHXW2A0UFFV2dk1hYfv8/I/f3KvW1IzPyWitpa7q4nvAttHl 4W6RiaLXyrne04quo+Dt56K9rsno0bbOuOn16tzd3B0hHPT26/v88zQ0JCwsJGhgLO3l1eTUvNzE pOzUs9y8lcygcOjZyMSMVNStheTMtDwcBOTErPT09AwMDAQEBAMDAywAAAAA9wF8AEAI/wD/CRxI sKDBgwgTKlzIsKHDhxAjSpxIsaLFixgzatzIsaPHjwgfQOkCBUqPLmrUkPSx0oePHiVNxuxCswsc NXDg4MmpUxOen0AB4cn0E5BRTYAwacKEyZPSpU6XNnXqKZenq7kaNfJ1ymquXKrChsVFtqyvs75k 7Vq7LNwyZMqUIYOrbJm3u9zujtubd9vbU4BdbRqMSRWeHi4TK16cuIfjxzBjSpZMc2SXN4gQCfKE S9ewz5/jKtOTUg0ZNV5Qe0mNWg0YMqdZgzFjBozt27bXrCnDprccPXR616lDSNEtcoUIKYfEyA4k RZD6QEpOqE0b5dgLFerDPbr07pDCi/+HlCiRIkmKFJEiNYnSpEm32H0zlQrWK0748ZvKn8rSt2PH RBMgOeRccgk5TnhgwILVGBDCDiFEuAOEE06ohRY7YKjAAQpscUAOHnIh4hZbIMCFDjrIkKIMQggh A4stxjjDEDQOMcONNNCQQI48JMDDjycEeQIKRBJZQQU11EAEETAsaYEFLjz5pAtUZmBlBi9k+YIG XKagQQpgXrDBBReoYGYEGKSZpg02QDDBm3ByIOecdFrBgRV45snAngxgw6ef2PjZp0APPFACTF14 UVNJjkGR2Bc+JJEEFlgYkUKfezbgQA0ukFPBIJQ6IqojlNayATn88ONABZEMYg2ptSz/KeuS0jzj yCzS5KrrrrzW4sgzvEpDyyfEEutMr7zuJc04wUoTSbO5zvIrrdLImuS11xrBQw1HJlkBDDDMsMgi MUTiSAvXLDJDCg448MIQRsTbAqWSBrJJVYCpggsoZA1DDDHK6KILMcg8UlprZsDG2mqqoUYGbmDo xgYhjZQhh28X98bGHsRVZ511e4S8B8jW1WEddoT0QZ12KhcSHnvhJSKeeenRzF4pnJRCyS3QlFIf O7fgl8orQ3OSSiq3wHIMLMex4/Q667CDDjkvgKDEFBJGqPWDFV6oAIYXanEAiQiUXTaJW3Dxooou vhgjizXaOOONM+RoNw0/AinkkEYe/1mBrODCYAEMUVIpwpWHZ6DBlhqM4CWYG6RA5uQRqBBBBDas CYENcMZJp5x48rlnoKSXbvrppQsEwOolvNRYST6QIHsJJcRLQQcOoB4NDUr07rsSI5j+uxI33DDK KCL8njvpDgyvxPKBOnB8Og0cP8oT1o/SgBLamx6N9dUfL0L20GODvfXfH99A6c4rUXr1vY+wvRIy +L4+6U/8bnrzvw8wAPHRuEEHzmAERwQiFvjS1ypWoQpQgGIVshCYZ5Rhi0dIghSCgA1sWkOGKzCM Nmbwwhpk9gbdrCEMF+PNKaYDCULwZmMh600bREbDPchwZB9DWcq+o4g/RGcSrzjEc//Ukx71TIIU 6vFZKSZRn060pxRQhCInOnGLY7ziFVa8xTdu0TSnlY4dl/jGBVbQgWpkrUJoDJvYDiA2EI0tbWU7 EQJkcCIdCCFFMYrREIRAIyHMjQZ1w5uOeoS3vPFtSDUgkpKIcKQlEW5KLsiACFzwAixlaQSM+1KY JLcBM1lOTWtqU+cm8Lk8WUF0fUKdKleZun+sLgCrA0DrSOCS2c2udkagAAr48b/20aB0I1DCL9k3 CuOd4ZjHdEDxbvC80vFPec7MnvVgUL1pTKMB05DmKMqHDW1ms3zns6Y4u0e69r2vfb+7X6Dy5zt+ lA4GN5iCAClwBgrEywHxwkIcQuH/ilMIoyuqkAUoxrJAWRj0oBL0FzEmgQxdNGINEUuJBmGjB1EM jBgtlING2aDRjOlGDmUIQxk+qjGQykGkMLzhx3CInT5IYhJ/kMQfYioJSVDiFbe44itM0R6kQcOJ nDCFKZb4xFKY4oqcyCkWv0G0ox0NFuiwxDHYUTp+fOMbljjCGbg2Ia6pMUNhe+MbS4QiOabIjmtr UR/5yEca0e1ueePB3opUpCShoFt/c1KUpnQlLGFpcYwDk+Q4qYIymUlNbRLlmz53p9CNjpWQjSw2 VBdLAAQAlqurJQlo94BYBkAA/uslOvs32tKa9rTD06ZqjyeE3q3Wm+LMZvZQy73j/x2zFccsRjFH QVt0Fu8MrRiEIz4RiFDAQRNXaYQqtNLABTKwoAb1zL/+lQ1qUGMbRN1FdHWxXc8sYxIiU44kGEGG kYbBD3Qow0hDupv1ZkxjGsNhG4hTCDsUghKdYERNw9OdP0Cnh6+wRCcoQQmhQvGJnHhFNKCh4GOk ghxb5KJS75OfV8DiG1QNlNPAGKAqHIEA1cAa1x6EoQxlaEMkOsDY4siFsqFoRW7Lox5rhCNA2pgH PDJkkYJ0LSTllUngghKURDDJxFlyBJrcQOSUTCbLfRJzGGCTmxZLStCZ8rGSzTLqBHJZzFbWs7As wWYNVSjLgnYAlyidP0I7AAG4Gf+0DZiB6SLgjzrXWVPndF75num74LFzeMJz7TZNp1rTnS97wSNd OlSbO+llL5uJDtQWjjcNZCJzGqe7xPGMN4ozOAC4gxCuI+JAXKLgwTRvSModAPGGVgPiN5oRRGb2 gN43kCHVgmBuBEEDGoH5SxmJkIMg5LAb3ahXN2BQ70iL3V5jw3e+e6gOJciBjk7YwaXR0U62uSOd 9UxCZ0Ukhc9uEQ0CfWMd6ADjFl/xn6YWDWc+s/A3yPG0qV0iGpWIhoe3ujUSm9hCKhYbAjyUNi6U SAYIOCuL7KhWtcZNbjYC5Ax+lAAf7S1IdcUW4IJcOBdM0q+Ky+SXIie5Jj85yon/7RwHqjwnx2JZ yzCf7D+6TPOa09zNACjUAygQACIPQCCmS0dB/NeAOv8jHXOuXzNJV3Q7+6N3e1aCFtx52kArQQHu DBQ/FIBOQ//uCaar5jRaQfZQD4LsyDweOdBH6GIWD3zF650ITkeDT59BuKQOhE7wAIjMyJrVrXa1 32Uta0RopRGIELYg7mBrNegGD3pohCz8Zd1mAMwQjHiDSUF6m/Z2vgy2UfYL2XAdP8iUZ7fAfCde QYmYctulRv2DS6Eze0VMIsHayH25r3oMdKDjG9iIBk6DBm8odsKo9PkGOqLB/HlD+KrMd8IKCMBV rpY4Q1sIW9o8ZDYXr21FLgo//9ziFsgaA9Lie5MrxhWZ1781iQhChlKVKqmlwI48BUoekyctB2Up Q2DKLNdyLhdzMMdln+VmsNRlb7aAbuY/WnAJCxhaSjB3pSMCA+EPDVAQMoANI1AQ5dN0TucPe1Zn vjNM2LA9ISg81VANvQN2pcN1SgADvuN1zhMNTCdNZ5AD7hQ+NBBAy7RMSoB07OM7N9AAPxh3vTN1 gWJMRoAFSaB3ePAGP4EIRoEZnpBrzLVcYXF4XOgJeSBrd4AIX0hstDEbZiAGYcAGjbAL1HALlFAI IUNsEMVsJzQGysYGaUgIw1EIf2AKklAHhaBghzBe9vVSpcAIjDCILjMd2rEdkP9gB4xgCrBADscw b7dQH0kTDeQWVVx0RTijRQkGC6lgCgX2CtAQIAHifAdCIAQifR/AVWCVRh5yIWhjcGijcGfVNiwC IzNGN4FkY3ajficAJCiASIqUJLMyOFJiOBkQSZakJV1yf/hXWJ6EJqHUJgAYgAJ4Si9HgFv2DwKg gOG4gAfYgGx2jgFAAepYjmd2ju7IgO04ADeAW2fQATfwZgN0d2SHdh3Qj8BFj2dABS1iDGpjDJaW j5aWkAqZkPFiBGZHKWYXkeNiDL9wdvEyCBXZkGZXkaGWS5ZmBPXUkA1JKSRZkqESB1/wBYGQDN7A CHqwCZKwDMtACaXwCuJwkzf/aQ5XJQ5+QQrhQQi5BhgtBAY0sRpGeZReAEJGCQaCMAmmUAjGFjFr 4Adj8GyAaAc1ZQiGQAiS8Ap2cDKFIAmYlxwm8zHztRxOyUWd0AkMdgjQQIkKtg69dwzaQA7HdzRR pDM0yQmYdwjplmHsADW/p3y+tw78QA5NYALU11VpxEZgpQXZdwBmQyIiMkcnojYxBiN71FZu9VY3 9iN4M4xyVYx8c4zcMitBBknOaCX0lyVc8pqRMzmGdSZp0n+bM0qMZSem5HKpRIAg8ZvAGZzCOZzE WZzGeZzImZzKyRDzcA/O+ZzQGZ3SOZ3UWZ3WeZ3UuQ/YAA/4gA/wgA37cA/x/xCY7HAP+IAN+HAP 2BCY2BCd8PCd95AP35me9kCe5okNUQMP9+md+omd/vmfABqg+vAPzRmg1qmd95mf6hko9yAP24kN 9aCe87kP+vme50mf9mkP+gmh8dCfBjqdA1qgH/qcF6qe4TmeUeOcUMMO9rCf8BAP6sme35kP90AP DxqhD4oPCMoO9HAP7PCd8jCizxmiQkqd2BCkNeo0PZqkPOqc+bAORyqh2NCiSdqf9KCkznmk8rAO RSqdAzoQItqlYjqmzomg72mi8Qme3Fmi4Fmiz3mmbYqeSYoNNHqhCHoP8MCiNEqmfDqiRMqnCGqn 7XkPUHoP9QCl/QmeJKqoJf96pXTqnPC5nX36p0V6noGyDhHqqHuaD+vZoxf6pCZ6oWd6nvFgD0Gq qPdgpjDKqfAQoUVKqWQapQ2KpbPapPG5DvDQo/DAqUvaofAQpFdqq0dqo646pl8qEGHap8q6rNUJ q8z6rNDqrNA6rZNKoNR6rcoqrdi6rR96rNZqoKj6ptyJnm6KqvCwDtoZnnGanuG6n/cJo5DKDq5q oeSKDR06qP6prWJ6nvCwD+lZD/hZpu15pghqphXan+mKq+rJrPoKneh6p9q5pNopp9CpqAaLp+ja rt+5D+EpntiwpOtKqvB5p2iKp/Kar99qoO/Zr0dKsfJAVamKr4GSqC8qpxb/O7D6eaf1sLEl+67w 6acpe50AS6XbGQ8Uy6p4irD4mrQ9G7NZ6q/1eq/S6aBBWqKjaq8/a53emqzc2rUA2rDQqqNe+59g O7YHmp7TWrZjK7Zmq7Zm+7bHChNyGzskAAVw4Ciu4wOTURmVkQmacBMHAwiDIRRAUbhBgQlJgbg/ kQtMkbhMgQmIcBVM4Qn+hAy+kAtckS9gIRacSxZogRbCsAuhiwzLIA55OjXrsA2q6w3hIA7cwCzP 8AzOMLvMwiy80BWAcRWeoAaM0buN4Rgv0SgywSh7axk1AQh3UBSNsAqe8Rm7MAyJYBqnIVHTezCO twZlmBJleEJ4qBth8L3g/wtfvRFDdTAyfZAK3yAJKEMdyvEIOrS+yeEyrtcd0jEe9lseRZQe7PEe lJAKx9AJnLAMQ5MK+WE0QqM0x3AJluAfBnJVlkBGK2hGW2NGECIhXfOYAad9LTYil0lHa+M2vOhw nFk3npljg6Q366dIKKAkSuJ+gsMkVOKMkRRJ0LgljgMmmiQmnbR/n4RYUfZ/2ahyjFUnu3lloaM6 D6C3iFG3NUESiPESkwEFgRAIKVnFVqySU8wTOZEJcDDFXqx3OTHFmTDGXEzGY6wJaKwJfpvGbIzG sfDGcBzHcfwVX/G5wSAMwpAMeMwLfMzHtsALyRDItuAMezEO3JAMwRALrv/gCrEQCpoQCpDsxZD8 BZJSybIjO0nAB3yQBLSkGHzgBlXsBkfABz5QxYpRxSXRBbm2XMqFCxH0L8pADNaFDKfAagdjlCGU GrlcG2RgBldgG7UxG3OoHCEFvu8VMlx5DIzAMXXQByhzHWY5Xx2jHCzzeuBhv+RRHvhLREaUM0z0 DbDgM8dADhS2ercgVAlmRZZADnJ5blBjbj+wAwYQwSEQYhUMi2kEmWijYpNZIiJyIirywW+zR25F 0HNDwoVkcT0iJEQyJEjSwt7yN5BEOB7HjEfmml+iSSXHwyqAAWjCJlI2Adk4xFY2gN0YWZT1ACQg vJRBEpRMO7iUaEboPGD/9wRHmHXYcAnLlD1IRz7RJE17FlvTAHYOEFvqRDpcMHb72AD7iA3pUAxQ XT41UAzWhHTidNTe9D689TtU1ztHbdM/6ILrdANspgRg1wAdQE9GEAesMMaA4AnKJQq40EC7BhrC QAnbgAyAoAZmoBqpocu5nJRgwNeukRvGJnriG18zNEMjsx2F0AbODEM5BL/cwTLRER6K4B6KoM01 VVPcTAr9S4pc9G2mAMCpYNpHI3ywwHxLU4kDEjVPQ4lRIM8hMAUixpgWokba5yEH0GJkpQNboCIo 8sG7GMKbOSNDIHE1ljcJcHEMvcLIyEiOJDjgEklEJklZ8ozR6CVMNpsd/105iPV/QpybJu2N31hZ ScwYlwzTtXM7ZG3WRx10Xp1nb5eQbrd00aNn0bQFJyhNVz0NxaAOxWCC+BM+2gROq3XU5sR03BM8 85NOpfNnYr1OvVM8/Xjh6khAWPAJzJAM+aJcDNRc0BVBsUwNy+Ayu9AIgQfMpbFBfS0HpbANUGlC JmUx19FCa8BRvgFfNpTYbTC+IXMyLeWI/AUJMnVTPONEA/Ye7UEf7wHATjlUxnfaOKVTqRANQNMJ SHNuyrdhTkMO0fANTaAgEozPj7lGkYk2CLBiJoJwagNjISwDfWQjEGd+E3fCepNx0D0r8LeMRGZk lvSajqMBJDcms2mNmf+TcuKtjbv5J+YNWZT1ZbKkWZfcWQBwOy744L+jBaSjBb+zgZ3uO/I4TNDE PPpt6q4lBFln4AauTfwdKLVlPdYETkJ91UMIaAxe4aNQaZumBF/tPOqUPKMgT8Vjg3Y3CGwdCpkQ C7kgC5zbQA+EUM3bvJ8BMJDAULLQCIwXeGsgeQo1DMowCW3QURy1B3ZgB2SwBnrAbOrFUSClXhsV X/J1HTrUB39w2pMgCeOR2UeVNFaEU/uBM5xAYAMGRUf1v7CwDtEAC0pDNBQ2Ra9Abxm2noH5DcwX Ba9owRQSi7rdIWpeIiZiIjqQcMMdwnrEmXJDNzsCJDgmjHzTY+0nK1L/YgGJkzjZjUmDLliGfiaI jo0ASN5X9uhaZoAJ6GWvpNKbxVmXznPxOHcj8HTu+ARSP/VTLwMhWGczQPVSzztSp/Ver/We7jtf P/arJQRj/wRDANXFMAXSRAMi0C4OAAOtJUyHZlvHxAPBNwrVIE1DkCReH/bEcz1Sr3Gj9gmssAlQ QYV6gIWHp7uHJxaAcQqiIArdpVDLkA3Z0AzD4GvLQAqF0FGC0BvHFjHrpV4oVMy78V6SfZYpAwns 9groke/ahkT1Cwl/AEWUcDPuUWD7YYpLQyDo+w1Dk1OXiB9GhR+dcGGX8Jfo9nsAUglM4AFToA7v 8A5d5VVsJDaQKTa+/z1wJwLyCmfybMVWdO6LwRhX6kdXRdJI071XhVNkz2h/+Id/svlkiA7E491Y Ayj0kgUQ//4BABCgoMEACRUeBPCgRIkHDwoK0HLpCTaMGGcoGdDR44AGSvxlxNjgn78ZEfw5IBlS yUuYLDM6eAkDG0waNGDuJHlzJz+SNHe+7Plk1NGjPRsgZTpt2hMH04oxTXeR5IijZ7RqnTZqKY2e 2EbcIOvgjBEjWBzF+RIIDh5MgBDNFXQH0Js3avACAnRnLiK/c+/kVbPGsB49ghqJGkasGbVmwyQP U1bojRw5ZTSDyWIYzGcwa8oY1oy5DBvUbNq0KVSI0q1Lrwz9oTRJEv8kSH36tNbdR9HvSaQSJfqt aFKnV7csHYvW3BI75rdS3Yp2CxqsVJxKaS/VyRI5dOvYYVuHjty3b8fUL/EQwv0O+PC1aNmh5cAW +1v0b0HQfwsXHXRAQAYZAtSBQCESlGEIIYZw8MEhaJhhhpx4SICGBHg44QQNUdjwBBRqqKAGESsg AoYTLYDBAhdadCEDGF+QUUYNaqwxhQ02uEAFHnnEIAIbbMDAhgkgKHICDpJU0gomrWCAgbCilHLK ngRS6MqDrkxIAC4FQOgSGJ4QU8x0etpBIH/8+acBNdUUISN+TkpTppLStHPOoIaKySWeSLKTKJLS 0VOJooa6pKVRpmn/pZVBBvml0UEa2OqMBsYcsycRXiKLrAY23alMkm44g9G12nrrr7n4+qsRVhtB pJE8Xm2VVUHoyiMPu+RYgw429hBEGGKo2WaZVGQTZA3MSPvMszdEMwzZ1Hptow5TDmGEk1Q6YeQ2 UyjhTTdI/rCttd/AVUTcV6IxD71o1vnmlmPOIyeaTrC15BvuSinFFH31TQUWWJiL5htyLvnmEoO/ qQQID6Z4L7745pvvvvv0Q8BiLvhD4MACZUhQCAIZdHDCGUaWkMIKeVCZww9BrAEFmEmsYMQTT3TR BRZFgDEDGUfQYASfNUhh6BwvMPqCCFSIAAOmhSRyAqiRVJKDJp18/5JKrLG2MgAvFerSawEGCPsj j7r8SE2B0lYbzTQH8GcAke5M+0+OPPIn7pfS3Onunapx76VqAg+hmkELN1wJphLf6ahidpgq8aNu iJwspPTclKwOMtf8crK0GqTUQDbx5BFB9AAEkklKWUZfUoQRhpRlkBFGlFkhIaTWvgZTwwvevTBD Ct7BkCKMMNBAY41TJuHkm07oIIO0ZzU7jQ3NqC/EDklYK4SQW17xow5IWmPEkEP+KKQNQtInBH3e IFGEElOmO+Zd766zBJ1ooGkXG36KfQU5cqzjFgHrRCkMYQpysGMdAVzHJQoGHnSEBx2V+EF7IEYf +ByAPgfQYH4OcP+xjOkAQAfiQscQ5LEGNehBKiRZTiTkQpVpSEMgglmIREQEE6HoRDBY0c0y4AIR zOgFNQqa0DaAowtsoEcRYCLThhQkGxgpalKbGtUYYLWrZS1rAunS17TEJa51UYxdashDIsI1AKSl IEaoBTjGIY1nAIMPcUhLHGZhDWuAQ497BEcen/EMcEjjjXq0xiwiEYle8IEPjmBkLWYxi1rMMQlY eEglsXDJJGRSk5vk5CYxmck4xCEJfHgkJGcBDGcAAxjSkAYwaPFKN3wBlKhwRippEYgkfOELbkBF LHOpS2C6BQ7D7MIwjQmHLrilC8V8hClMIYnUmWIZr6BmOMTxDXT/KNAc4jCHNrZBzWVM4hSNuEMd 7CAGLyxzmb1jZzt9Z4bP7ME7dXhDHSRRCHP6wQ5sMMQtDFEIZ0rie23oQyoMkb5CQEISfVjfatqA mj04tA6ugcYxDoE9habiG5boRCdu0QlTcAIWzMvWdvRFCU7UZhKT+MP4yNETBS5wfuYJDz/4QUEj +O1h8qHPxLSgn5/eBwEA4gJRDXSgAynoYx9j0ISGgDIY0iCGFvoQzFxWIhSYKIcpYhEQXRSjGREx BTU64gVScDQeJY2JS2takKYYtSomyQpUY9KT7IqRLFIpbfO4R1/9+lfABlawgyVsYQ17WMPiA7GL ZWxjHfvYxerj/x98hWxlG6tYyz5WspTN7GMxW9l6fLazf93saE172sxKdq+oZS1k94ENfJAntvu4 Rz6wYQ/Yxlax2NiHbv8KD3jsYx2whe09yAPc0ML2tffQLXBb+9zDlva0y9UtdYsLD3YAlx7GpW1f 2WFb5hb3uPBIbjywYV7RpnaynfUtb7mr2+piI7zYgEdfedvc+sYWt7R17z1ei418+BW79VAvZ02L DXnYNyMKxoh95YFg48rjwX2lx3ATDGG/YoQdrFVt2vTxYRCHWMQjJnGJTXxiFKdYxStmcYtd/GIY k9jDMaZxjW184hnfWMc7jnGOefxjIONYbQZerHuXe496EBiziv9lcpIp3Nu+4qMe8lBsPc77V98y Vx4ERjKV++pkzNZjHwlmrHRZO1u/LhnJ+MAHmY8s5u0iOclK3sd2s4xaMxM2tsWlcJyXS484I/nK r8VHd+9BDyj/Vr5fJjCYpxzmMX+5ylaOx5e9HN31PhYe2NjwfzErjziHFsncFTOB5bGPRl85tG3u 65ELzeV7nJrLYiYzZPNMWOf2V9ZfTvSc6Rxn7da6r+YlMIAvTevA3re4VUYukiON6dU6dh32uIc9 1tFXeKyD0FnubzzWEdvtKnu3lU7zde3x2uTiY9r3yDahrbwPa5c502emb52Ni+hrE3rdf4btOirt 3EP3Ox53Pu3/rQP7YAKzo9K8tUen5YuNQBu30st1rrfBreh9oDof9YW4cc+NjSQzPN+Llnh41U1t wxocsbkeeG55u2n/kpy3+bj2tNFdcn1Tm+LreDBtbQ7yd8fb1vMurL8jfI+fixni2WV3fQOu7n9z 3NAxL3ZvYRv0a/vVyvSIbbqbHnJ4Z72wHU4nFKDQBbP7gAQ9MPsXfGB2s6tT7uocJl/UMEw84KGY fMEEJvL+d75oAhB95zsmPNF3xGMCEZ5gPCZ8IYxc5OIUuDhFLhjPeFVkPvKZ53zmcfF5X+ACGbHz BTKUcXpviGMdq98mdhVYjnGMwwHraKUqnSENZ9Ci8pKX/Cag/+AD4Adf+MDvQfGDX3zkJ9/sxYd7 3OWuFzXkfROLkYUudHH6U6xBDdvnPvfJAAYy7G5Xa/jM9uEJBjMYJgyGQc1h5BAtzLxfWntgAyMo QQnbqU//++f/9r6FG3DpA9wYQNxIhNuQhOJQBFJYKQbcDk7QDk54hVTIjgfshOxAjlewhGhgB3ZA j/MYGCfwAAOohhH0G4eZAocJAYeBGPlQAIl5Qf2oGIsZKhkYkBJCIQRJoQQRmZJBmRbKiQzhkBli mRCxIRsiESLAISJQEZxpwhcJIhEIohGgkZ8Zq7E6oqLZkbRSGrYKkicKEiOBACl6q7iKq6qZqyYR iBIwPh9gu/8uwAM1WL7jYzu4WyYogIO7w8Nhij64YLxNuDvuA7zAwwNNADzDOzxA0ARNSLzLY7zI ywXNw4VdEAZV2LzOU4XPw0RfCL1N3MRJRIZtMAdRDIfTWwZTXIZt2AZvWEVv4AZncMVxqKVk2MRc OMTM84TfGz5dJD7jSz7kgzvmaz7nWyY16DvTaYTqmwxZ8IVdkATtC7/t453u2x0zYAPt6x0zMAM1 AI3QUD/1CwM2wAzUkL89iKg2gIROIAdGeITWKIQA5D94JAR37A0BJMB6JEBIIA5FQEAFZED4gQVy 6IRl6B4JfEBOsMAHnI4B2ihYiIaCOZhvKIIdMACHERz3UMH/EIiPh3nBF9Sg/ciY/tiYoioQjgEZ AkEQHnyqpzoZCqEQlZEqlqkqGiIRmeGhJLQAnGwRFsmZDNAZGeGZIboRIzqrs1IBLewRJxqSIRHD MYSrMpSrqnmSusIiu3oSgXCIs0M7YvQCKKBD5RPGrMzKYjomPNw+PMgEvPu7s8wEQtSETFDERFxE RVzExKtLw+u7Rry8yPOER4RETPw8XOhET1SGYUEGwzxM2REGW+AGbmjFVmRMbygFYQgGVziFU3AF V8gFTYCDQMiEU3CDXQzNOUS+NlymL6BDsHQ+NWAVT2gETJSFyUCGXdgFw2wEwohGafSC0NDG7sNG blwW8lsD/zZYP+khHohijT94BVPYg/Tpg04whD1AnfNJH4daDfWZR3oEF3scwOHozgRcwJV6DXaw hFJIBYesF4N8wJB6hXn5htUbmAgiB/lUgSO4gRJ0D8HZgYzUT/jISI7koP24mJDUgf8QEBNKKpTc QRb6Qai6EBmSSSMUkRtKQgpdkZz8KqB8AaAsIqERGrQ6SqVRSiiKoqbkACqamqi8orvSImwQiDLq yh4gAbFMu7frgS9oOx/IpVDSJEZipFAKJWBqi0D4hEAIhB890k9IUiVV0iEl0kBgBVYoUil90iKF Uiu9UiyF0lDY0ljoUmb4UjANU2Z4pTGlBTBVpThiBlQIBf9WYNMovdIhpVJRuiQ6pdMSqFNKwqQd /QJSigJr4INOwoJN8gFdwgO+ZJXXTEbHIIZhQIZh2AVB4L522p1JVQN4gkY1+L41WD87KIU9+MZo gSjXwKeIIoQ+uKc2KNXq3IM6QJ/rxM7eSChoUgQClIThSMDfIAWUKoXX+IaQggV0uIWDtEDkMMh0 gYVXgIVLSAcOXL3yIAcmoAIDwM8VfI+dwiD7gMEtAFAQOqoSQlAcVNCmUsmWnBAXgskhtKoNKcIS odAdwsmceZGdoREOvcIs1EK1WhqniaIogpqnpKu6WlEWDYurbIi3mzu0I4Hhy6RLMgKZ6ADOARUU 2Aq0MAL/HsiIaJiUi8WISaETbHCARQnZVvBYkF2UGpgJkW0AkiCHRvkFl3VZfnjZjLCGX/BYGPgF a8gIRhkEoMiIQViUrWiFljiDG+gAIVBZjNgUpMWIGtAKKqCCMxgELqATGtCcHOhZSUELLPiEUNgE r/UEzwMFUEjGxiAGZViGZtiFNegd3FSDK6jU7+PGZxENOVi/TQ1V1GiDP2jV6nQoP1ifckQf63zV 3WjH3kDAfEwEfLxVBVxAjyoF5XkFfeGEeKkXC/wXfCmWaLgES7gFeIEgDlQgckiBFriBapiC050C /dxP/uSpDuKgigHQEOKCAQkQEzpJj2EQpjJXlryQlHlQ/xqqIRLJqiSsAB1SESb8qhnhmRoZIivE kbJaIh9pq6chwyWhq6oc2C0aiIZYOxhFzTvsghx9CLSggKXlBy3QExF4gj7JCPYdiqTYCZKFnPk9 img4ChhwAKZoACEIC6NwimloAADGBgAuBo81CqTABqRYWgWGHESBiff1CSVg4Pd9iTfJCD4ZihHo lA44C0dghUwQndbMPFAgYbKVDF5IBltQhj3YRm2URjB4W3bqPnh6FszQg8yAltLolXI0x4daDUio gx5OVR92KMItBGhaqNyghFSYBPf5A1Lgx8YFjmJJHc9NHQcsTwmcjm+gJmoih4BZB+YQj9BtoG9o AhCY1v+LVN0Lwtaemo/94I//2IIcECGkwt2lWqoHcSofPNepahmXCZERkZkKxUkYwFCemVcbEZqh QSId6REVcCIhwQAxtN4lSdG80t4pcVGCeACFHT6FJQFRJl8joACI9diw4AchgAkGlmDJQYquuIGY yJOhQGUMhpyjWIqjGIGw2AKvwOVROGBgZuBB6YlowGA9oWAI7gmh4AjOyZyzMII4CIUuBdvJk4XP A4VVWAVZqD7ra1RI2ARJIIVIBYNpzFQySOfye4NEoIQ6eJZuLAM5QGJJYIR3DoP3kz+I6uEe3mdV dVWEwk4ARB3lNAXlpARS0FWETmhKeAVOIAWD7hZepQT/BzRI5ZDAZMWO5DiG1eNADWOH86CgD7hI a9XI+agP+3DBOJZjLqhjjgEQAilJkNHdBd1jDIEhC1mZda2hmTERHPLpJOShnNyZFxGioMQRokki EJVkEnXKKsJkTR5YTiYIAFhDtftkUSaBSipfiIWbobAJTFECUCkJTengSTmDySFZPVFrJXgCXc5l ABbgxOlZkgBmYcZlYtYTRBkFJdiCDH4JZX4Jq3BfJSjaDqAACojmijWCJGhTTfAEyzyFVShhVdhm bu5mbvaFZGyGZbAFZBAFOWiWuE1n7yODPFCGbDAFQkiDw9CDMtADOqgezaDb4dzhcMRbfzbH/RNo 3fgN/0n4F4dGjm5RHut4BYiGwPtLnQlMjlSIlwE6BkvAlgk0zw78hvHgNHbAn2+oAgkggNN9GP9E afhQgG39qS0g7zg2kJjmGJnW45EpVxeaAR6okA1J15iRGZo53kOOVyCKEeb9mQ6F3rMymrTqQgho an996oCFkqiWau6laoIogTbsgeDLpIh4AFO+iAgwnKWdZfcdhU2B2BvIAWwgi5dga/kNiqN4iaO4 iLd+68QBi4yAHKc4YAC+8QAmiWJGZph4Zb4GbJKoYCXo34y4BCUohmKYArOmAAdwAApICyINhco8 BVWYPFxQBdfUZm+2Pi7n8sZYKWVIBD14g+dZg3Q2DP9k1IWyhYQ9MA1xJIR3pu3MEMd81ufUoD9W Fdz9YyhK6ITgoIQ/cB8mng5Y6I7/MQWEvL+D5IRJoGhedcBOGCltQA/pmO5sGSmHJAkORA9LiIIz 8JvVfQ83lhjYtRj9CBCQtN0TUqoF0d2RWUmXdMmcTtfgfZkaUEIeEmon7EmwopGjbuRHRppITsql PPApUnAsanDtnWoIN4hQfgiFLQGCyHBsaACkHQExgQGVTYf0LRxtx4gIcABrb/KboAFrDwtrVwIR OHeliJIGMHeVtXZrpwHFOWYWb/EmZ+B0aHIArgFyDwoHYF8h+PeZaPJE2Qp/R+V9F3LB7lls/3ag cID/Dv4FR/gEVtCETTC8S6xsWdjmblZzRpWM0zvbUsCNZcgGYpCFEm4EyVZzLkeGUpCEO4ioiHIN 6tEV0pCe0tD5zIiWIQZoeeyDldpHexR6CfQoZE2XW9gOlWr07jgGaOgeaEiXDowGgNlig7RA9DgU Tb+E5mCCNGbd/uSpnlppOdaYEdoYjln1mXYQFVrJnECZqYqhqqJJQfbp40XervohDQXKRc4RYD+a pCH2MDz2S7YaZY9qZodwql47iLhwgtgSj8ibZiYbsjmcoeAbzN98+AVmyEEcz08cHFcczGcKrQBa Eagc0J8CJP/xze8cDw6lIn1LTAiM1nRNVShhsRXb/8v+eF3w/UVVhtb5/W725sZIBUgQBH5u89N4 P9GQnucfDXnG2x7mW/TZR4+ahHvMDfeh1QE0BWjohPeJH8gtz0Z/hXfRhnWI+g6kJljonmJJT40i 49DlB3fRQEv4gZHeT7EHiB1aBA7UsuWAgoNbuHBBsAWBDBk6dESMKOQixiEaZ8zYSOPjRx40eJzg kYDkCRQoTtRoiaJGhZYViMAgYsGFCws6XYjIkOHFixEvNKQgmiLFhQsqkipVEcEpBgw2bEyoapUD Vg5Wtm5lgO0r2LBix5It++8fgLRq1wZI+4CEDxIlSjxQG0DAgAFawMpQkjevgMB5G4z1Z/jwDLEN lP8wbqzEQVgHjbVA/vrEcWOxjEcpoRGW35ZRokVXUyf2yahpxVZPE50ObLTRozx/dcB59LTW/L7C kC36DPAz08TCaCzbAfBBgxw5ihMoEBxNmADhAYToOqI7d/Rg99ToeyNBiL7naaRKlShZsnQNI+ae 2DBduog1G0Zqj5z8guSU6Q8GzBoB+geGfwGuUQYbCe7RRhuEEOIHIZK8gk40hkByISSFFNIHh31c qMgkk1DCiSmS/KEIKaWk8sorsKDzjSXHQHPMN9+8Ag0sMnKyoyml7PjKN5eQww6R65BDziXRVBKN ExIQoM4OIUhJkBYFVXnlFlk6xMVDXEwkAxcSUST/A0ZCaHTREB1xNAQNCcwQ0kg8oLTSCSnJFFMN RMxUk0433YTTCz4BZZQGGmywAVNNqbBoBFFJRRUEVk2QFVddeVUWppmahVZaAXj6KaieAlACCXI9 UNddA4ggVgT+/PXqAA0M8FpYMhwWwQyVfbUYZo9F1hivSkRzWa+aOabrV0IUGxZqsq0aVmi+iUaO A1P4toViowW3bQPIJjvKDaOcgZwRRgyCRRzOwZFJdXi8cQcg8b4xL72ACCIeIvdm9wYe7r5hryCN iNLee/CxN8wwwuxRhhwClhHgfwdm0d+BBPYXRhgK7rFxg30QAuQrkkgyCSMdmrxhH39QQkkpk0Ci /4gikihSSiev0PgNObDc8s0tt6SSijbf6LziK6UYreIxSAq5DjrokFPjMdHA8sMHUwq0A9ZZU6nF AQdk+TUCYU40pphkmqnREGhypOabIMVZJ0kkvVSDSi9VcPdMNFlgE04W9JSBCz8BNUKhRG2QwqFN KRVBozZIFamkWUluqaaVW35WqJkDAKoAo851agADXKKFP7SCdZarr8rqDwzE+XOJP76C1cBhx2La 67JgMfaErpcQi/tpjj2RbWrTANcK8sHlJhoNsbUeFg2yASdaAzfcoARhn1lP7rlxfAJddfFal528 /v57B3bpk/8GGWrQS68gsrRHTTb1xUcKJPzx9//wfwCWEYaBKNaf/iSIDW1YkIYKcYgadYIRduiE KRghMkl0CBIiElkpDNEHmMVMEaa4BYuioY2nRSNGtziGz3L0ilQco2hHM9otjhQNdjjtSDWKRtSa EIMCRCkEWKvSDw9Qpa8RcSE6YMhEvEQRIejgIhFJm5ku0pGNcOQjCQhJnbIot7rB5G55ggEY+xQ4 nIggcD8RSlCMgjhEIaopjIvKVCAAAapcZXJaYQAeLafHTW3uU4FpSx9DFRgAnIoCILjEX/7xLLDA 4CyO9AftDLOXsIzgMMhqwD8OYxjZ1SYzjtFCsDITFscoIHi5s4xjhJCtaSBPOb/4hXJasS0R9Ib/ M0oQyyUYY71dVs96jJmkWDpwhu59D3zxyhciADEvd6nPE3m4l3fAk4dnaucOb3BfgPQgsGFQoxvd aAYyDGGINzzsYQIyEIEsZk4EsSFjCbKDJBRoCmg0UGSd6IQhKMghC5qCEjKbhCH+4CEQmeJGNDoG LKIhNFhoo2fHSAUnWBgNThyNZS9MRY6GVCMb3lBoOKialHzowytx7SBe61oODpCDLHmppRWpSJnO lqY0ra2KIDkJSrJIJy7mCW82CeNNeiKCvw0OKENRYxsVtSg4xnECcqyK5LDCFQZY4VJ7vCrmMufH PwZGMIAZqlfz4g9cPhKSjjzLJb4ig7NeUpOW//xVr4YXSiWMNSybZEz2dgU8Zp0SG6Ex3hmQh7x0 NGB66RDCaHz5PLAoSwm83OX1GjM8sIRrmFhIwhcCET71BQwR5TEPeFQBHmk6s5roE4Qf/MAGOWxM YOnh5iu2UYgAOuxAAFwDGCZGQHaygRCMMEQhUESKSZRCEpCwhQQLwQhGQOIPprCQyPqgIQ/JjBLQ WAd22SFCqd0iGiyCxi1gAQtofAOiqSgFJW60ox11Irw3i4YNj4SkbzAhBgTQmg+1VqWEJMQhB0BA 2JQYkSNaRAhkOrBMadoRGrTtim2SU9zmZKeXEEFPe7KJBWCQkzEO1ag/KdxRDscURC1KBY6SCv8G 5BgpyEGVUnh8cR6vWrmsapWrXc2LA3LMjwjk2AF/4Z23sNFjyORYBP44ywwcKYMc57U2RvYHkJuM jQZIeVeb7LFYcvw7TvJGCUAWSzocIAIl3EY0Xs5eOp7Au11Nec1DBtcNchwNxQxZyEWGbGMgY70z GAFd0IEDwAQRz0fwghTCEMYuTvEd0aoCFOcRbTQFcQc5oO+aXri0F8xgBjCEQQwYY8PAkDHBQpAB DGYwEDoD5M7UplZDhjgEIUxBDlMUYoKvvqckCJFADel6un0wUXsVGo1bpFcb8P3GMdDh0J9BlBM7 WyEsIGgIStBIoTasIbbRAYsjGCGkUwJi1rj/pgUFOOQhAAabl2BqNrNlJG1rSxODQSKnkOS0TnXz ok9rAoM//QknPxHcUQt1lDUmqsSNetRTnVrHqFYVxjLWFI3/eBdPdfXGsPqLACiOl1cd+TAX/zjI Qy7yv4RrNcUYSDF2UAwywxmyLn/5y3+zLVkqTzSsRJ4WimE9cW3rDB0Q5rZE8/Kf/zw4FCiXEXpu LnRlNhS8WMYj8PCIUmxjG6/wBtZjq41tLINFLeNFIiCBn3zJoRGPUEMXMK12L0iB7VIww9s3LYhT LMMWuAVQFtYAQDqEoQ2FUJAf7GAHPxTCD3UgxDE64SBI2CFChzjEJArRhjpQnhAM0vXLSvEK/xB2 F4U4i9E3cIiNGZJjR6noBCdgQY7zmj4ah5jzV2gopKeRg2noYNo3luCB/EYp3D/kWteq1LWFALgh XwrTgA9MJiiiaaY0/cibTCInLdb73nrKU4WBumF/C4pwGvD+UZCalBIvlak2UHHkGD7VGD9cLFnN +F0yXnH5D8DiXsVLAE5VSADcv6sBMEIk9EIkYEG5HN3mnMsi9MIQXMM19MIidAAAUMAg9AIDXoM1 9IIDuhJzOMIgLEIAWoM1MGAkDALSlSAWnCAKpmCfEWC5pKALJsEJpktzRAINCiANRkK61GAkOMIJ Nscn1II11EIkJEESyKALpiARFuEXLCETLv9hMWUWHjCCKUwhJ2zeFIaDNojDkdwe0zyNNqTCMqQC JVwIeOyBGXQBGq6dF6QdpsGdF5jaqRVCKlgCGpCBqhlQatUBG9QB4UkCJXRCrrWBHExCKqgWITRX 41kegzSIIjKiJHSCzhzCyKgMkEgNNEhNQfnMK1AUJ6DeyohIiFDCHxgCOYzFOrAD7TnN7TlNFRwB SGlNuBVElnSN16QUgCFADryU2FgEuzWf8ynYm5wETk0fnaRESnCRF1UYTehN3/iEMwaKUX0fUagR UpAY+Z3Y4yicpLQYpWiFpbAfVv1DxcXfxMUf/M3f/H0KIdHFqWABHwCDM9TCLMxCLTiDNAD/wyzw QRwUYRzMgjOMwziUwzkM5ECWg0EGZDkAJEKOgzRIwzg8Qy3QAh98Ai08Ay1c5CcwXRLMBUeWSqkk IUgm4ReIZBFi1nPwAR/MAirQgj1Kg0CKwzmMAzdwAzCspBsEwkgSYSC4gRugAip8gQ/4wBJ2ARxA QWZBAVKiIVH2S78sExzAAVPigR48giDYQjhAQyqYwjIsQ8uwzCtkYe05jThs3VaG4TKQgqLJgRmo XRqm4RqmHW6pIYDQASd8g2rFU3pRgiG8gh+8QnsdAuUVQuUVwiscQq1pCIgUwsYUUIIsYoSwUCo0 3oaUgoywjCmoHjm8wgzlSCeszCe2TIj8/4Hg3QJZGAmMHMPsNQ062AAS7B4sUsnviRsR/ReX4KIO IADZ8KKByQDapE1vtk0VDeP0EaO98dRM7EkYgVEzOqOgDEXATePhkBhTGBw2xhGLpZ8dVUrDwZjD jYUjzcM9hKd4jid5lqd5nid6pqd6rid7tqd7vid8xqd8mqc+/AN4zid+5qd+pmd93ud+/ieAzmd/ BiiBFih71ud3GqiCsuc+fEV4fsU+lGc9wEM9pCc8YAM83AM+fAU+LKiH6ueAAmiDmueGdqh7TmiF fuh4hih+bmg85AM2yMN6lih+jmiBsuh/Yqg8yEOKqmeM3sOPtmeQBiiCnoV/qiiSNmg+2P9DPDRo hOYDPZQojWLDPtCoeMIDlsrDOjRoh1KplGIDPoxoiWIpkqoojuqnmIJpmnYomVIpkEaohmIDkMrD lFYpmMoDPNBDjMIDnO7nmcbnhn7FOjyoneJDiaapPWTom45phtJDPrwppN5Dg9pDhNYDNtBDPfSo fP5pforFjsrpnMoDqMboj8aoqD6oqMqoqY6qPbADgRapfZZpmY6og7qpl4JpnVppeGLphsJDruKq msopo8qqh3LqfK7pmt5Dm0aom4ZnPqxDhv5ql/LphRJprOZnnS4qsIapsILppWorPpDpskYql2JD PYxoouansc5nkK4qqp7qnJbqp6KqvML/a4yuw6MCKKweKbH2q7/+q4KuK8AO7D0ILMH+q8EebL/C qn3Og8M+LMRGrMROLMVWrMVeLMZmbMR+p8Z2rMd+LMh6LMeGLMmWrMlm7MierMqurMmmLMu+LMxi 7Fld63vq6VfQw4fq6ocmLKCChaKmp422p87+J886qHkG7dGCqnpeKIciLM2+54VWatOmZ7O+J9IW 69OiZ6Cyg6bGJ5lSbZ+mJ4xiaJya6KaeFb+yp5vWg4nyKrDKKJDaw65mqK0WaqSGJ43CQzx86YRm qNsaarC6J8/C54b2KTzkw+FKqpyS6YieqrgOquIqq6+C6Y1mrXkiLjzILZDSw4g2KD24/+p4uumI iivdhm214q23EuqXcqvipqibbmjfrufgkieWgmntdinrNqjr7sM6qKrdiu7iZmjnli64HqrSwifP 6mmf3irgSq6yQu7o+i3xiqeNMq/xkmc8UG7ZOu/1que+xifwzu3qEurcSmqX/m7Y0miV6m6Y3gM7 xIPkrm77tufsumfhiic9rIO5Ri7jymn0Om/k0gPOdi3RWi55Wiq0gum5TuigNmg8/Cz5/i/jmq2y Hi92aa714mqEBu3rRuj7yq4BryeW6ik7rG7nKi02ZO/5LjCk/u//1i2KSmnYvmfR7oOlMqsN53Dw AvCI5sOjjiv1jmqhyvB4lqieAi6bRv+rBoNwgsonBStsAaetil4tFBdsCFdx6M5w5UoxwVJxmQ4u 22KxeGaqvs6sGZ8xGqexGq8xG7exG78xHMexHM8xHdexHd8xHuexHu8xH/exH/8xHeNBF/RADyBl XMBFUPoAISelUjayUkYHHqhBu0AlU8YLHmhCVPZLvGACJ2MCHnjCKXiCKCMCJ4uyKOcCMiBDKOeC L+TCKSjDMiiDL6hCLtRyLT8aLvgCLuxyLvvCMphDOKSyMgzzMngDPJziKRIJO8DDQErDPzKkSzqz MzhDMJzCKfjCKcjCJgBlInezNysyIQclIY9zIUMBOSMlOjvyG+iBJFdHI+DCerCHMpz/nSSrgT17 ARm0jz2rwVoCyBqYgRr8Rz5HDKrRwYEUUBjkh4JoDMdMQmc6CERHtERPdK/t04Xsk4dgiEYngiQk AsyQAkiHCCiOCESZQkSd3np1YieySHcNySXgTOhFAxN4gAFUgwHctJRUQzVMgUjx3g9djUAchEGU FEuZG24en7ohmC+qCYO9ydpY0dvoVBYdI0y0hJ5UmBjtW7/92xkNCogZzlFM56IszokdnHVe58JN SlRNjhWs9VlAQRdAQTeTAFx3wReUczrHNRrmNVTusxpA5SZEsiZTRyZfMnVwMiBogiZ4Qic3dmN7 giu7sjBgc2Tf8qNdtirw8i77Amd3/7YwIAMsh8MxE4k5bEM4eEOijgM8JOQ4TLMzAENDOkMyCIMt 17IndME35zY494A4h3MhL3I54zUjo6EaELY744J8IAx90LNf83P76LM9/7OmZVr/RMxtYczDYMwa MGYBbcxi9kFB5ZqDFAJFl3evFQKGmExGa/SFeHTMyIxwiTRxgZCPRNQmpvR6hVA0rMMlRA0JfUMV SEABGIAS6HQ1eFsPvebvCUTwCZGWnFvY6MBDSIQS7ebytZsQ1BT0jYS8JcBJaFHdhDhMKGNNVFhO aDVzEhUaHVVRGMoaSSf5QYX5Wac2qjVW2Hh2boVUaacVnAVdKzI6+0AXoJ03o7ORo//hUyb5U/ZL cXuCJmxCYEdyOxf2JlPHYk8HJmhCYgNCJ5syZNcyLqgCZGNzI1j2ZfNyZ/eyL8jCoe2CN6ADkZBD OHAd1mFdWS4DN0xznk/zMwCDMJyCLXuCKviCJuh2bofzbi+ykSu6kdc1cS8TIDTCeiCMLqy5wkC3 pqnBpWn6PYMBGqyBpntBQFe3P9/WOfHWQrMBxyTCK1gCeUO0dEX0I0D04Um0hkCCcVWQRUPCerc3 B330H4Rien0D6v3M5qV0s21eeF2CJSQUkigUBhxBB+x0TYcAT3tbfvGelRCEST2E1zyEEeUARCRf gfHmhf9mvLmNcE71Fs3N3OTNMur/zb7xBHP+21CMgFAM3MBFp+LI+IxPBR1FDo5TCo9X1XbCWFWd RQnANRSQQA94AXWogTnztiKLc6M3cpL/NZMPdiZbOcdzeSe7sickNidLx3V4eS6I8nnkgirswi7Q MmZntmajOWfLgssjwy+HQywPMyzDcp3XuZ5LQ57bAjJMdi5sgperAhwYejdTfG+TM3ALd1w7ehpi gnhoEzwjDMLIAmg/AnTfsxqKuj1fQabZ86Zp2n9ot6nTQYLcloIwyCNAwi2gw6vfOq9PNCNOtMlc tHr3OiRwtHsL13CJSCdEAzqc3rChNH5HVI40vrO/dJAwwQfYtAHwtIFju35ZSUkJ/5HXlNsWSDhu jju5q5sv9ib0NRhOTbVU20lVywRN8MlObNgzDsqghJ9RXADiFBzjvBEcydFUVMV1rrWOayceNVzD fcWLfcVZPICQJ+WlwUFcj3MiCzfVPyVRKvmSY3J16AG79Ev3X/IllzzJY7l0ODYmkHIpezlkn3Jt W7ZmdzZn37xpL4MwpzJoK4M35Dk3eEMxAwQ3b94ELhOWy9cpV540Zcr0yNUXHz5ITLR4EWMPjRuh 9ICCpotHKCNJQulysgsgQZ4ENTrlS9cwmbt2KVN2Sk1OnWTIePGpBkxQMGZ8miHqRSiYMGvArAnD hg2dpVDlyIHKpg4hUqmgtSFEqP+QpEKcGBUiJakPoTpes379WqhP3D6Q6MqlC2ku3USSJCny65fU pEmUKMHC9q1UqmiWODVuXMqxYkvf0n2zTA7zJXJVWBCoFqLalBCjR+8ovWOHltRatCg4wFrLgS0K ECDYcltHbh0yeO8WIkPIb+BChhQfMgM5DeQzaDSnwSNBghPTeZxAcf16jQoVamgn8h1GeAswLIhw keH8+QwZXrR/oQF+Cg0b6NNXoeKCCgwqIkTAYANAGyCYgMACOTgQQQ6sWNAKBhxc0EEHsZkQGwYo vBCbf/55oASPuhgJpQ878qEHEkn6AqVARgqExUC6YBGOGGXEI0Y8MpExRod03FH/kx57jEUTTDDx UUghgywSE0+UXJLJXJzMRRVccPHFF2GsFAYZK5HhBZkuu+QlmWR4sYUbgQjihpdgXHHSlU3aDAXG TeDwIQmKSLizIoz0LLGHLtyA4gg33Piihy8kEomkLrxoqRGXTpElJmKIaaYZZHwRRZA1yNDJJ5+a AoNToK7gyQwwyGiKqTWcosOpMMqAag059qgjK0a+OYQNtwpxCxK3vGrDK7fAgksuu+46NpFk+0rE r74UmYQTwl4hBxZTpr0klWU64SSVV0qBLJVvoiGHHXSOuWSdddDBzAYcOjCAtHhPQ401emFTYIsD 9N0iBy5k02233ngLDrjhiCtu/4bjEk6OhgSe46G66SRGwbrsuqvgO4zJIwIGFzxOjz323INvhBRM 3iCFDS64QOX87uPPvwAhmLnACRK8mUEII4wQw54p1BCAB0jwqAcSoPAixBJNhMLQppuOA2qnm24x EDiqhvOLTz6hmsWtuQ6ElUB2vHHsHUMJRUcf1dYklrbbdjKYuOWOO8y666YbmGfAAceZZJgJBRVX zh6clbAD+QTOJLBIgvHG40iihMYbb7oWYPj4wo0oomiaTsl9aNokQBpRZXRVQFlFlmEkVYYYarok 5A081OjUC6PMUKNUn67wAvfagypVqDUIUYSNVp2Cao892GgDklTsADarQugClv8Q6tugdS1hCyE2 LrzySuRYvSBh9i+/JvmWklfYgYaScNfJNhVuX3FsWmhuOeYbWMhJN11yLgniAwYQzRQM8Bl50Ws1 9YrNbW5jGwbqAAEyQMBuuMCbgv1mCMFBmBCWoxzmMAxiCYAYxCqGghpkhwjb+Q4RLMAxF1gAhh9z wQtEpoH2aGAEGpCPyVK2spfBTD//+c/MBkSgmyVIZw2SkM+YeCENPYBDIDIJ0k7SET4VSiKMgxoW uNhFL3IRamEUoyPIWEYzihGNWlPjGtnYRjdqrXBxZAXgZlFHO9axFrW4ox3zaEc+vFFrUAtkHLBg BCMU0pCH/KIiIxGJLkaCBZH/oME1HPlFL04uE0nyxOhwIQtf4CJSzbDJMJABCU3NrlNm2NRPZqcT ougkKKpaAxsSQYg10IEqV0FeIQ5RCOoR4hFt2AOwgJU8YfrqLX3YVVzgcixS/CF84HMWYEhBCVMM 5hWvoEQnjrGO+cWvW7fYFidecQxLvEJ/62AHO9SpLnK4AAQFGM0URIOaea0GNQl8jb72ZRuAcYEL uhnYBYlDnIUpTDnOmUF1IhaxEl6HO9qpQHg4BkOLeiwDIhCBe0YwgvbIR4fz8eEGXhaBIP5HQEWc wIA4YEQk6oxnFmriTDP0j6A9oE8hEpHSLqK4Ll4CG+kAwRnOMARyUKgGhhzE/1KXGgmgYuMFrbCG Ay601CHUIB0XugQRrDGISOztqRO6hAssIdMJWeIX1tibWbHRCzM+QxrSwEZce3GhCIQVG3e90C/W eqHv9GIQ1ujOhRgAAwfwA0Nn4EENEEuhFNRgCEs1wiBA8AEeNGBCIqgBVbHRAAY0QJFJCIQmPJEL lXASFJ2UiTJk0qVdCIJTtTPK7njXE96xslSyXEMZrFKGMizlVWxQnvKIOcziQs+4xQyWrojFve8p QhJ3URb5AHM+U1DifLDQJidggY5tpQK8qYCF/GBhCfvd4hvrIAc61lkucmigBQUIjbxIg0B8ruY2 stlCbbgwQQjmRgYBs+Bvgv9T4IMpbDkOE2FzHFodimWHOxjjWApZ2LGLomc9ImtPDnV4shSwDD/5 2c9JAUQzA+EsZ0pkK01nCjQo+gBEVRyJRqAwEcYhcggTasANeKwEHt8AsU8YxSiIqtgLCWHI0xgy DyY05FFMg7MTckCRixxlbEy5yDm+MpUxeyEYtALMTOUHmFsxoRqA2cpnbkUNJkTmLk+IykW+UAOm 8eMbZBUbP34zNp5QjA504Aw76MAIKJQOO9+ACjoG9CHjwAqHkJZ0UcLFKnQRE9UtoxTLIAYhdmJb 2unuCkHJCU90u9tXucoqukTeMI3pFT8Aa3vEtJ6whlWsuvgFEooAH12m+Zf/appCnJO4RTS+lYpj 3AK82UzFLcjRLWiU1xKwuIUlNKPOdfKDHJYYwhSqYcAQ5NM0qQF3bO61XwfuF6ABtaAFBYxBDSJM YUNojgh50JwTjHBi2OmOdmowYfCQR4YiyHAN4QMf+rCMpPj5IQYiYIMh2qBmR1RQznjGYovXFABB GxqNTVISpn0BcoakwJu1oASTn1wJDXiCyW+gBBFcyAEoN/koaICNk4/Cyg5wspNzvvMhp0PnTm7A noM6DaMbnc5GxwYPitF0Kz/h6DVX8ij27PMhz3kUMn+CzU2+ZyHfYABKGACGZH5yfux40Y5gRSwQ copT4EIVcVcFpS1NSl54/yMVkNDJqFfphSvcbnajwt1QmlIGWfpWVXqwSqqFmzzHD1MS1RMmq5P7 S7fI5Q/QxAslOAHNZu2lfIAphbdKcQtoDOZbpbBW/DjRiVugExawOAY0tEGOaETD2utcxyWiEQQq CBA0p/k2AuuVGn7mi4ETrA0CKqhuHQinwBk0DryX08F6i/De1LHYvrejQvEA3AIvxGiG33NDg3/Y hy7zD8NRGqCIHxGmS7w4i4GW8RKQiEQi4SlFSpDIDhBdBMoO5WruyMru51Au58qu50bhCRpgyLYg 6IbMAQkNQ7ZA6JyMHHbu6XbOASXwQpQg61AO606uAUzuEkjwQlZOCQxACf/wqgQFkAbQ7gyMQO3Y RklUQRTgznROB1JkgpQg4RF44RTegO/2jnZKZXfAIHlQRVUQTw4EgXkgAZeSZ3kcT7gm7yqG6Qpl TVcIIS0mwRCiCy8mwVtyDbqapS/+wHzAC1qQ7XxKYVsgo/XKabxeYdnQQdrQ4RLQgULa6xK+wQk6 g77AjRC1IL9iQzYQoF8CSqDWjcAM5mAMCmESpmEYhsEc7MEsxoQiDDzG46JcwDwEbsNGJj5SRmUS 7j76Q4ggAEBWqohwRkEipEHmb/7qT+MyokTwpAT6zwgooAOEYKYCEOXwjEJQzuoQEOYUEOZGgdA6 0OpKcBSAEUOEjOqsbsj/NtAa90wAR7AZT44FUy4Fv5EAKSTmTC7sBsDO/owCaHDtYsHtoCS1cHAV UAdSKk0ZJgESCsEWCmHvjJB3cqJT9IAUSKHUZIkN8pEQ8nGWdIkKH+/xGk/Wluvy4oIv6GKbJqGa sEsRBnIgMXISOiEVzqdbKKEUCAMyvoW8tOv1okElv6G9+pAdyOEbVOAIPIM0vM1eFOgQ8ytfckAR AWyC1m3AMkiDOAjBEqo5mONhSCj7rONiIqz7OCY8AA6jNErDXoDDeOhkQOyH9ENmTMylECTFKo4W 6c+mMg4A7k9P8IQEdlHkOqDlooGmSg4cKeQFb2DniGoUWs7kElDmrCwd/0QAsZzR5+is6aagsSgk GqrRGrHxGT+w7DDksHSs7Lzu5LbOy1jux/6MM9cRC+IgFNwxFzrpFKLEdOhRFupRGbaBFwTBLIZQ VYKCJzaFJ3JiKN6AFJZBEt7g8GKlDPYgEUiBEwrhDXyLKlJNeVYtC1uNmGjNWOYiMD7y9UrhfLCr I00hJD/yFa4rWkiy9Rzj9bJp2CwhnHBvvdhhQtZJJm1gCajAgOzpnnbgNVQDNlhjv3zyvyCovxqx wAZm+qiv+pzDobIvE02o3zJGKmGoYzxGozaKhjKg4CJ0K3/IP9avxMDSZsSS4uSvLM0SLW9RIyaC LXeRF30R7E5OBiKAif9koC4p88fi7Az2suX8EhnJEQQdgDBp4OgIE+d6hkd5LgWtkeogU+bm7OSi 4QVXsBoMwDJNDjMp5OtuQB0pgEqp1JCwgBVcYU1UoTTlbu7mkR5RZxdkohl0cxJ2ARF4U9TI4AqA Yihu5w6UIRt2s9R4qyqEqyp8yyrCgPFUTTkbz5hozQvxoi7SsBOy6Zo4gToDw1puAbtQsiS9c9le QRvOKdm+AdmSDfeigb2wob1sDxBjQL4+oxDtZZ+2wD77iflyYAv2M8AGiqD+0zgscd4YioQoZjoM 9Cm9L/wCjvzYo+BeAKS0kqRWpj+CKEAg7v1eahY5tENb7CwzLgAeQET/LWJESxQFoiHsyk4LEvPK lIACXZTHYLQD9lIJaPTkFnAUFvMBHRDpps7JxpFChNQxk8wDizEy7fLmoqEyU1AEU3AHpuAGiGod EymRREsTcuElUnMVQCHuwDQ1ZWEVcLAeh6EZSoEUdKEReFNTZnNTgGINVEEXmuEVJEEPliJWqkIO VMVVDA+XoOIpYJYNgku4Vq3yaA0uFEEN8UJnJaGcXuEWplMwgE27oKUTjjYwSBIyKBWd8ucY8JBb wqubJgM9KYQfouEbqmAFCOCACNG+XMMQ0e0na+NVdYARCaYoifI41vaDEoreaEBiKqZiLiaFJurf PpFB3WNk3qMUW8Zl/04KA9pPpVAMpp61FqMVLYWGIuwET6BI5LZOCATQ5BJTBcluM4kK0Hasx9C1 L5fR6tLBXaeBzqzRW63O6Dbw6FJXG/OVMlEOL1GuSU0uXK+MngYW0KiUBxzgSuNAbNjmUd7OYRsB F3iw0orXeFUnS5QBGfZADVLlDciAYwVBFCKFFB5BZVV2DyDBDkzNN00tC/1Ul5TL8rxwElKhFHJN DZ8FaA8VaF9BJBHVmkYPu5S2MbBTG9YhaI8BFsArasXrG6DBJS+EHSzDEqLgDOqrNFSD+OYTXxjo AH4SYAJMwIZDBqTvPykRKRtmhJgSOwx0O7pjwsgj/Ho1/MiPFIn1w/9ahj8AF6VqJkORiCwN1+Js 8UOpdS0fION8ETNZFOX8oeukDOUSk19bzs6oii/PNRn/MolPTgt07ALpdV537uieLnVVl0j/tXV9 zF5DsEm/0cp8jMc4MweuzDO3JksfwUk4Se6I13jbOCaUQRJIARlOQQ/egGN5Uw5OwdKIQRkgoQ3u dA0UD099y/B2i/HyFHyZc3ylRxI+shMoQRHo4llM4Wi7RdqsxRQUFQ4J47q+hZLn5xbQ4Ru0IRqO wQ4r4RYaw/XIpWopZB3EpYBN49uGb9wUgD4ZqIFYlQvQDYICrIIIDPqKo6Am0YOUUimXckCxgwgu 5kCnsldBUeCuEiv/Cy5leqikGK7hUkpZjeiFJ45BnFWGm4iGa5gt86QEAIBKO+BJ00EL/MGdTXBC ZoBbu+wETw4G8LVzbVSJ9VkIrMwZf3TnMBMErY6KqxjprvjkjBSMiYyolOwGYncYKUQL7IwCHQDQ HOET5igTNqG04g4UHHbuIjY1604mJkUZSIEubAIZRKERBEEQ5KARpldShkEXdoEU+gAKkYcQDMEO irMqdsvUCJmQrUIPavYKA5XWJAE78fEP0ILXBsP1grYTYCEaOCGTqVMwSFLZ7JATtGGAn82U+bcx ugUz+FCAea/3qKA06su+5lM1Hng2bmOXA8r5fMMRDWxtJ5FWLzFi/3BV3yDK+yoqhho0o/SWw0qx mlVmhfkjcFPqFTVUxcA5nMUZcQMALacV/+7EB0oAh32RCg5gAMJOBhyAtB1gBHhYcpn4CUTgCegy tV8btm9OSK1uC2xutn3OoH0utmcOL4mqFYpsyHbb5GRgBCKgARwABrbAx6hgYAcBo3mXozvaS08H YlNzJpSBUqihG7QhG7pB2XZhFURBFEbaeJXhFRjhDh4PEhjB1E728AzP8IBrqJ/i8ZpzeyiSJJta DCWZMAyBMIztGA7hJOc3kyXDf1Nhf2QPFqAh2RyDWyyhldNzgPHHCVqgnmS5EOmzPg3RJ1u1vyaI EQHs+YDZgoPjg//krYMe5t4GtIQiyjtgQGMsqoQHjm9zaCur2Yfuo7EFd1kP5JtXbLIp+0MBIAAs u8g7hP/a8rIFILRDW3KbHMq3VbinnMpvO7hl28qTLHV3TridzLd/uxiczORY8MqnvLcH4TNZJLox AREaYZPW+KOpO2JjongnpaSzwRQgYRdEuh5jAtMK4Q7aQJmYpw2Msw5aVqjlQKj5tE+pkJi2JyzE qSK9pw8aOZIhwWcxVTBAMhUeVfWMLWhlEsCzCZ3sMJXp5xjIBSZf+RhY8ggOGMO/DTbcWr+Sr4E+ nPlkoIJeNfoseFb1WoM3OG7lFoUoTCpdCIYEzio1jJpNsYcU26T/dLz9XBj+IjvIaWqci5zIM05o SJSz0dkXmRzKm5iHo9zcZc6HqVzdZS7LQ7Ddpbjpwly3Z84A89K3zwAbaODmpmDImk7JYhsvGXqp 4iCje3cTVsKlG6V0vHR0Pnq8+ZzOI4UYVIcamoGmY6IZHNV6ZUUQdMk4Z1aoQ/7jh+tmt4cRZk/z 7qIQevZYSs8UngWrOXmbYOEbgPYYxIscxPP1vjOTxzq92Ev30EGUW/0YlsADQkAd3MEdZF2B6SVf FMCWzU1s69oRB6qgIvE4ipkHlNJWqcM6nPIpm7kTP6ZXNeywO6yH8iM/jrWxL1SlunniYvjafcYW tX3b7b4E2jLv/7893MV9AICKH3zY3J+A8L0VGy7BnRPfnTGEH55A35VACwifGIPKsPCKz1CO8J9U ykhbLgvNAndOCAgfQ0bgCYYg3uH1CRorHWDgCSY/6AL+6DrfGjertC+EX2cO50j7uEsbo80YDzQB EBBBDwQBEYq/+D3B+JVE4eOuUeSOHitNdSilGSa+eIfhpK/3p2UpDOQbvhOdZpOnDmZlF/rADyBh Elq9E/iiIvOimejiDyjhECB5MAQDMkASgG1vHSzhfvT/GABC2y1YqThxKlXKFKdX36JdYgdxHTl0 l44di9bExA517dxp2QEyZEgFB7RoOYByi8otCLgg0MGFi4yZM/+FyBCCU8gQnTpnzKABNAEPGglo nODB4wSKE0pROK0BlQiRCkRgWIVhwYKLrS5EvHiR4esIDSnKpriwYQPaCyoitMWAwQYEuRAgTJjA AS+HvVb69mWALbDgwYQLGz787x+AxQEWAwgAufHiByUqV37AWMCAASIER/C3ObSA0QMaRCAMw59q 1REuDW6gJLZsJQ4GO5ithEbgJ7hjE449KniDweSCGw9O+MmoadOKMR+VbvCW46N0Y7t9nLkQwemo n/ne6sy0wtNvHHdwptWgQVjixPkSKJMmPPT1CEKE6A6g/YDw38ePiCB++CHHHYII0ogqoogiyzAO EgPhMLoMA6H/MpK8IUeGcpRRxhocerhGFh1ySCKHYZzIBht77FEHIS5OAsslr0iiyB+SFIJjHzhC IgkkkCiiyCSvmCIJJX+QstAr2lgSDZPsRHMMOce8Ag0ssLzCSSqdHGTQK0yuww427EhEziVQRlPF CgTsEEIIO3zk5kkmHbBFSSodgECeLulAkw5+0nTTTTgNQegMQxjq008+0TBUUkkdpVQNT0VVAVVU WQADV1xl4EIGYb2gQahlaZDWWipc4JYKcMVlA1137QWrFRz4xUCth92KK2KKOfZYY5Ax1tgDJAxb wgPGBqCZFoTNENoAmoXWwACFrebPDBHUJhhsvWEb2G29YcPb/7eD4TZCcuIKptxxW6BGXXDbOdDu KK4JJkJw03yHr3iG1TuKeWegpx57jrwXnyaAvDHHfnrIoYcebzz8BiCC5HGfIHsIAvEba9jXSIK7 OAiyhBM6SMoeG2a4Rsoqg+FhhyCW6GGKKu7RRhuFEHIIOa/88YeROhbSByR96Bh0kJNMUgqQpNRI SSepQHPMN1JDI+UtryjZ0C1JHoRQKrBEAzY566yDTpnfXFTFEWe4yWZIJr05pxYKrLRSTC29BBOg NA2qE6GFLurTUIxC+ihTTqFQQQ1USQUD41q5YIEInnr1VVgagJoCWWVdwDlbKqgaAVytunqXXrH+ BViuqque2P+vwDIGLGSUFesYsgNcEt1goDUL7QAwEDbCag34wy022uJWvLdKYCObCOHi9ttsxTN/ 7m7UkUNYvMs54EAxUxz3O2FCBJfvGcKNwg9hDQRnHnpGsNfeJ4HAId9+AB6c8cMS33cHgPmRoQY1 POwOBmrEKZTRDGI0I4EhI0UhMJShMsghZR0CAxjIAAaYmYgNcphZG+rQIjsYQmqdkASNFAGJHf1s aIpYGiUoQYofAalnnWBI2cgBDW2wwxJWe0XUbpGKW0CjEwhBSCcsQTZ0oGNM5CBHQ45RCUsAwQNs AwnbPmKSLNqpTizhwp908JKa1AQnN/GbGc24KMEJpXBMMRz/CqBSA6lMpSpW2crjPIXHr2hgBJkj 1VnYwrm2hE50crFB6UzHF1oBJnWrayRhWveryEgykrIzVu0EIAIRSGsw6VAN70ozAH/kTjBa8EcE ZEC81/SGNrZRQmeot0rZRC82T+BkLM1lnO28Jjv3+g4XRMCcaRiHH9DJHvnwdT4llIswNLjBDdzH HoLRz2D2u98b8KC//uDHE/5DhBwAEcCHCTBigjjFhIhBDWoQA2TI6IOGJpgylr3Mgh8KA4dkJrMP FgISpogGOSxBJCOZcIVD60OQ/oA0SSQCSDUqRSpS8Qoh+jMasEBHlF6RCm18gx2wACLXSsEJU0AD TEvExg2f/2gRJsRgClUUyUlKooUtmIQlenqJF/OUN73lJCdnPBQNfgIUpAjVjU15IxHgWKmqMA4r W5EcWMIyAlCJyo8pKNWpUKUq0WGgLqXLy+lQx0hHihUbiandJCcJrNk9gAIBOMAlNhM+wcAgMf/Y XWlWQ5h0zCB4rMyWamLz1+JFQwTpg2Usl/eaBgwnMJcQwWERi67Z1HKXy0lPKy6LWfE8Jxo0QA4n tdcAZypBl7Z55hne1x74wAEPB+vPgQBxh2vqj4D+o23H/DPB/GHInMNoRjaaISFkSMJkESyDBenJ shF5KIMfWoPM9oAjO0iiE1B7BSMkYQpTXNdGQAtadn9ko/8+SOIPQJoEda0GNbI1BB3RYG8Qo4El rhkEIVmyhJnM1kSpNSkaTliBSEISpyx+RAEIqBOdtsAFldzti4EKFKEGhUagLCooPFjjo94IFQwr bnFEsEBVHrcVPHrqK1IV1Qb+qJbPgS4CNhDdBOzyKljNyi9WCOtYGwlJZJ31rKMJgLHWSoFLHCCU /5iXYOiaGNAMTzWv9Ks/+hqYJT85sK1UQi1xA4PqGTauxrvlYJ5nZfVVNmDrWc9l8SWEaLDPOnJV gjPN06/Q3kA2RhZMNL4TzUDMb7WAwIQ2D6YGbLoWP3nIA4A80TGKNUIQ+nkDGchwTfuYE53Z+K0y THEIjYH/SJ7HZVkYNhSGlJ1IgimSwz4JgV1oaJcRfzCFIVgtiaH5aBKpIJIkJvGHoPFIEaaARZS+ kUNyRENq5BhINIB4C21wCSGUoK8pUkHssn0jv/pF0xE+0FK3abEkB5gbnQr8ki34yYtjJKO5B4Uo RP0UKERpVBsNFyk4bnipj9OKVjg1YstpTnN/7FxbssoqQ8JYxokE640dmeMd9xgyo2k4Y0QQgSdI /AlcxkY6kFzXJSemzqhUTfGkTK3kySYCkj2eLMc1G8IoL+Vfht4up3HZ9fxi5oOwRr6E7YARSLzO 2NiCm83jTDnPOTYVx8YNTouFgamWtfYDBB5SBltEN8LQ/9zET8cSfaD84OdgkN4YgpDRDXJoYxnI oIQhACHBDxnXgmtgGRjsyQYSfTqfNmLEISJqCOn27EY52iclDiE0XPto13/ohEOiAY1btBfY07bE N9CBpVQw6aMJKaJDmTRRf17iG5fY/Dcs8QNsZxskAj5J3XKApxx00U9+skm5y+i3viVKwuwWKlLe /canJI4qV5GKvZvq1LB86gWjOrFaAskWtwxydK3qKsFnXCtbHZx1/9gxjwWALNJgHwSXIM1mlFBx EdBVNcOjq7ICM4Ik/+Pj1FqNyFfJD5P7RndPjs1io7xKc82m4mMm8yBc0AD4AgMjYByiVWf8EBtv dgNCN/90SnB+gnF0Z8AeSRAH88Na/qNNAXJ1G8iBHZN1AcJod8AidFAHe/AIpyALE9IMEZUKeyBB LcN2bXdcFHQiKNIGLGIInXBdZmcIknBdPTI0AwUJlGAKf5AjBRU0RXIL6JBEDbEOx/Y0x8AOxRZE 36A1nNBsWWJ5qXAMX3M2/tRE+WUmSEBFbdM2WPQmBwA3KEEnLlFTYCQTfCIDOrBTO3UoPnEodyhh STE48BZvGRZHSWUVmAI5IgA5nfJUehQqfGQWaZFiKrZ8owNjeIFIMwZWNjZ9j1R9OhYZ2NeJDddw oXEJVOB9A6AEokQYO5Bk/tAAGNcZ/IBx7Nd+qSQYDlD/f7JxftpCLb9hANUQG6PUZVoGZrQ0GPzS S9/BA8ZjHHLGPkNHGNEgG0GngA2oBNEAgUdnBFiQBPBBH4OGCNqEIB2jCuI4jh34gXIwMRSzB2Fg BmIQBimyB40gC8SwDeEwCXsAIvkoTx2SBaLGBu/IBvrECIxgB4Xgg802Ca52I7c2Xp1gCDgyUC6y TzxiCkwSJU9CJVBjhbdghUpyDNoAUlhCCbdwDJxARJ3QCcYGNtNWJmHYRE5gAgTQJm9ihnAjYN12 Jwi2J3GYU3ySEzOxE0FJKDTgU+wWVO6GFIdzOIojFZXSOB92iJsyYiQWKqJSFsbnOZ8zSAFnSM5H cAaH/4mZGBgJZ30MF4qbkUln+X07QBiXMH6tiHH8IAOx+BqzCGXXsRozAIxSdnKC0Q8GMBvAGA0K cAlZNn+RtUrcIgIKuAWFtT6jwFkK2C9z1mS7EY0MKFqyYR3OhHQVuFqsVTGCIDEdcwq+cApXpwqg UI4diB8Z4k1m4AWx6QVmQJvuqAeQsA2pQJCSQAqEgEEq03Ylgk8DkiIi9Gp+QAlWQA4P+QfbZQh5 ZwdCIzQ6Qgg54iOScAhR83jRUEPH9jW38E+vYFEo2SWp4FAEgYUiZREXITU3dENNlCYU4CZXlEU2 eZMsgWDixnp8IoeuV0Y89WCGMgQSBlSMYmFtpJRvlP9Uc+R7mJIVWdFUU/kCY0EW/HZ8nhMByrcq dDFwX0ljNSZ9YjkYibFwCydJoPhJu/MszYJxLYpkq1FX/jB+MTqLt0gtp1ijpygb1RAC1WAAvVgN QeqLj0WksxEvuBEcxdAuQDeNQxccvdGkTZqAnDkIA6NneIAJgvAIvAAJW1oKyjAJyqAMp2lAwnAK ZOqBjRAg+BFbajCbsCmbZiAF7RgGYrAHorALEGUKhRB3LiNPFLQhKpIijFAIBVkIfkAIWmIHhGAI RDKQLyQJLkIIiCqR1blrtGYl0KBqXAg1ZQILTTRsWvIKKPkN2HAl31Brz7mdj0cRFDERE6FEloAD RsD/o3FCeqQHUwamYPgJE3A4hzPxJzYBoGg0YYmCFIPDRkU1KZbyYQ8KOfcmOXgUVZczVVcJSFq5 lQF3SM9XcAwAoiI6otWHfQ1nltmHop/kLGpJZC3qSeiaon/lrpthV98XG6YoG0mqDlOgBKPAUjtQ DEVKpG92TN8hTM04CsVQDCChpHBmHB3gsA97HG/2cwr4sPnysM7UAUindHDgCpBACg4DCcvgDeGQ m8tQCssQUdtQCsKADKRAmo/wCBNzH3mwBl3QBbKJs7PpBW8XBmCgIiFrCnagaSTSMu9IMzGDaoXQ Bn1ACI9wC51wM1FrB51wCDdSBzXTIpLaXUISUST5/3nQcDZVYoVNkj7HUENaUlFAFFGl8AqGcAtg kkRlgw7TlkRkYwNF4AFT8F+kp0UzNVNdpBIwgTf8KYd7A2FCIKATVntDBSlLkaDLKkcdxhUQmkmI KBYUSqFp8Uen8m/ZOhdc1aHcSmMhKpYkaqLmaq6liK4BQAEdYDvxKq+wyzsKiK4NdwOfJADONApn kLAI1goxdQZN+rAOG6UdgLHGWz6n9T5mdmbpYQzP+7zhkbz4YgRGUD7DO7zUW73by73VKzAVGArJ 4A2mMAd6UAgoW2tsW4/aoA3boCThsAzxSwqPkELh2AhyAKc5m7NzSptScEGPkAqHwAacljJsUAcp 0v8GZVCChVqQN7IHhGBdNcPAEDUJN4O1WCuRkuC2XTgQwPYKYMMkFvV50KZsWRJSsGAJL2SSptAJ poA9gsEOSuREl6BETLgO36BSBTCTe8u3aUgnKeGGrBdGf/J6PIG4hUKgi+sojoKg8jZvFXAVEHqI mSShIzCtZnGVVuVv2coqkxhjHnqJIkqiDHd9oKgZK9osAgAAaxU7z6K6A+CwbNVj5DoarbAIzzsI HTAaHTAIvbAIZLQIvfALgzDIv7AIM/cLrSADPHANQ3ANgkwBy9u9k0zJk7weWIDJmOwIm5x0jhAJ nxwJi1BmgdwLjpDJpuzJkWDK3lvJ2ZjJSQDLsOz/HgPjHvIzP5tAB3PgI89mC7zgDdogDt9gDubw quRgDtqQCpPAC5F6dadACHTgBTYbm9Ksv3BKmyyjCK9gC20HnIjKImxwM3sgCXZQCofgB4WwB3Zw COjsIn1AqC0CQld7gzTTBoTQB0JyDKnQaqnQNBcxJVHyqd9gCljCtq9QCgh5NM32arcQJjA8NnNL wxNBNuTQXwTAo3ubRSSRRXQjbjFBU2DEn4YrrMOah4pilBV2oI+roBxGR1hxRyGWAZRzuXxkYmpx fNi6KnGxVVy1rc/3od4afWGZK60Diqg7rp5oxpthxj9mSeaaGb9QC8/wDNbQC+5hBBTQHoF8DdZg /w3XsNXXkHSR0AtcDQ7gwNW1YMqazMm9MAvWAA4wAA694MpYMNeZbNd3jdd4Hcux7B584Nd8MAuB XQuDHdizwAfuIct8QAvO4Ay18AlxwAducNh7Tdnv8QVfAAV6ptmaDQeBAAUcKwnLoCWp4A0QFQ7s aw42zERlQ7K5OQmKcJqoVgfRrL+1jbNmcEGEoHhzwDIGXAiM0MKEUAeMkHdF4pBjwAaCcAjrXAcG eSOEUDPRLc8f1Nx/8MG3wDOKIAmlgMJOcxFEBJ5aE5KmQAmTgIWkcDSTwGroUBgQIWzFzIToAAs4 gG1sckUuJWAFNlPgdlOA4pPCujd+k7izt25K7P+HRQVHcvSU9XZHeTShe/TgVWmtnKtib0FIn3sX oQvGIBrU2CDUhmG6c+yJZiniSG3G2Dc7tAMAWDALjp0EkQAM0iANzgAMsxAHmRwJtPAM4DAO5eDj PT4OMi4N40DkRO7j0gAMz8DYgX3Yn5DktcAHn5AEWGAZlkECSXDllK3lXxDLXxAHlU2BgUALwDDm wAAMRC7jjC3VwIAKbvDl7zHmtIAKgeADPnDZgRAKgXDZlw0FfT4/mQAHgQ4HajDohC7ohQ4JQlTe y5Bdov1sp71RNwzM4rAN22CypUAKpzCOa2Db03yztX3NYOAHKEwHbAAkIhSdjFAHlKCbk2ALJRj/ z4UQwEDjBybkwHuAwG0QkNFdCJRgJblWkJOgUUPCwt8ZJU5jeSqc3kaizuw9GGMytxcRhvFdCUVQ 3y31NtkuU39bJ3YzbnNIxIIy0hBWKANqKERhoO72bkrxhwkuRw+aKZrSKSIW4SWmuTa9AdgKcIRE OjFWiV8F1EG9SLcyxmRsxgZvoifOcGtsLCUg5twgDW4eB7QQ5DXO13FQCz1eDufA8RvP8edgDulw DjJO5ByP5jJu5mPuDOdQDmzO5bFcGcMyLHUu81q+13tu2V+ACrRAC8nA80VeDiFvDucwDtzADbTg Bm6w51AAH0kfCq6ACl1g50wPBTbbBX2O9V3w/5mDjk30EUABZB+CAAm8sAxPu8y8wKWQMAlEeAvB LDXioA2vEL+p4L6T4COnsAewKc3U/Ok2GwYgxOmxeQVgYAZr4AcQFex+IEJUW5ABHLQuMt2FcAuG 4CJ28EJ/QAgIjE832AaQwN2W8JA4MgkD0cLa4ERdCAvfwA++xs8vdDQHjWvjzAilShgxLDVWAoY1 jMMxUAAX7VJuYydbZHrixhKs96sivRM8gYclPXuNssQI6rhPMUe75zgPCmLzLnzUWq3G54ifk5U5 LYl24cXcKmOjG/ACH30eTlZ0NQ/t7/7vD//xL//zT//1b//3j//5r//7z/8AMU/gQIIFDR5EiP/w 38KEDR0+hBhRIsSF/yZexJhR48GKGz1+BMmxosV7JU2eRJlS5UqWLV2+hBlT5kyaNW2q1Efy5k6e PVvmnOdT6FCeQIkeRQozZ8ekTWHuwwavJDts+1Liw4avJbyq9+phy+pUbE+jQ6EOxap17MmyO7GC XVfvZdqdZ5G2FQoWrFqX2OTd8ysz8NGlDNceNgkVW723Vu/Rkyf3nlp89eTxLcmV3T3FauXtk1wZ dEmt9SQjdoq3p13RcuUNprePsmmvcmnz/WxbbunTZHW6Ddv18eiS8v5OzorPauXLlk0qD037LD16 Xi/7Dkp0cMzA218GxuybKeq1UOHt28fVKrz/fGnpVqVrEh5XfPODy06e9Wza+eRT//ZpP/2wQU6r /rrCxp6S6CGQvffwUw4e/vIZSrWa3vuLHQi/Uo5ArBiUC76s+ksPMKsSLAkqejbDqp7+drKQp8HY sSeeze6h0caSsImnu3h6zKxHrdj58Ua/1jlOqMIA9C8pqNKD5zXH8FknP61ExGy+8/wKDh4h0xKw PqmavItJnsIM8x541nnSRJOyshIwL/N7cp3wYDSTJqwu6w5CMD0Ei0IT+RvTRQQd6ywzdnqzKcad ojLOr9d2jJTS7iot6au//GJsx6gIGyk7Mp1cDKyvTmwvTixPmo9Bdh6sB7Q/C3xx1ArzvAlN/0AN lEo2NzPjqkATYw0RHnuCvVXUmx4c1EoBgWxWTDWlOjRFHqVSDsd4isL1psF4xEctcMV9bVNMuTSX njETDOvW8Ww96qw13Uzwy/viAxaweOhaxx6oGBsQuX3WGRNenxy1SVfk/orHTmyqE44zHoXt9181 Sy344G5jwiqefAKreLFT7VmH1m2x7G9NKX896+G0+uVWWZ++LXLHmvX1UUfA7AmMSJ39iidj8Qwz uGijj04JYaRRU3rpw5p2eqwlZY66aquTgvrqMqnWWuqNuy5zJLHHJrtss89GO22112a7bbffhjtu ueemu26778Y7b7335rttrsFuKmvANf57cP9QCzc82cS9flfPxV8SXKxOi458pcktv7PqynmqrKbL vUYcpcxpoq2lzmG6fPSYpq4JZpKPiljYp7+2CavzqnPJLo7bJQrqtxi1VqWudN+qKuK8dWymzTP7 9C3Vd0w+pdgTI3D20PP1rqZaT7Jr+pWwSdU0eOTafvVQaxq++vnci4rA9vF5jasQ2anyYt7p2of+ G9nh6q/1w9Kfgsx3vQtFTD8lM8/EzvKV/qlpHRpioF/wpbjcEcwxa6KRxHCEO/t1iCsUit9iWFW9 e+SDWhCjnwgDKDEt7QVHDXTJ8qZFIBOGZR0PVJB5qIWektlDfx1M4Lam0z65+PCBU8HhTbL/Bo/N dMWIm4mg/x4Imvb5733PAQu1UojEDJ4kQezrUFdWGMPz0WR6/wtXu4RzoBNB6FekCcvrSvMw2qBx VgNMylu6Ig/5aZBEBJKXVF4UyK8ADzsvMZYJpxKPTkHFXyhJ37QkGTuugGUqxoIeGM+iu658hR6l +wntVKIlebApLOPbJAkTZCQ3RvKPj6HQoTRJQpoIjomSwZKLJDnIBglyh9yrHpbuaJJ68A+OvCoQ 8VbCOjNaxS52VOMF+QcPiLUyevFhkKDUtKhpsU9LMpGhS7ASPWyUzI+9AmQvJclC9gAGa7QTkWSE JDHwQdKZ6mRiq0Z4kh7hTphReSX05MNN/zISMCXzGRicDMS/dL7JkoAh2PjcFEgNYoVnbcTiNxsl StGIsJzzMQ3/CLZO4rERmJnMj0af40Bh9cd25cNJGWcSyW7G6VcmXVXsYBWwY9U0jR0Cpyj1FLEa tZOiqdzlmCj6PCV+7aVYmhRUWuTFeyb1jRcj5sOC6aeAcbKqPS2oTf4nIWc1FHpeitZE1UlRWZa1 qQSsFpYoykurxq57XAUqFn9KF5cGjIyNiwmDwIK7lwJMXI6pR5XW5Uae8YUuidVQST4m0cKWEBvs 4CDkhDoTPVKTQIVMoFaeWU7yFYwrcZmgkr72TKmsyE5+3JZJGkvRxH5qhHtZB4XsoaD2janpY5jV YEkaa1mJhlV7O+SrhtD5JvzUY0X1vMdsr/gse/zluYL6bWaVJ0rBjum6XuFfPrZVq9OW9qr4MOaq souSHk2MLitb71+J9rh3GpQoyjxaOJvkvcM5Db+I0S99QzkSfRTYwAdGcIIVvGAGN9jBD4ZwgisS YQpX2MIXtvCEMbxhDnc4whr2cIhF7GEQj9jEJ4Zw31S8Yha32MUvhnGMZTxjGtc4bQEBADs= ------=_NextPart_000_0073_01BF3FE4.5CDDDB00 Content-Type: image/gif Content-Transfer-Encoding: base64 Content-ID: <006901bf4027$6ac71f40$39c9c380@Illuminati.keyway.net> R0lGODdh9wEWAMQAAP////Tv9enf6t7P4NS/1smvzL6fwbOPt6mArZ5wo5NgmYhQjoBVjn1AhHMw emggcF0QZVIAWzYAPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACwAAAAA 9wEWAAAF/yAjjmRpnmiqrmzrvnAsz3Rt33iu73zv/6iIcEgsGo/IpHLJbDqf0Kh0Sq1ar9isdsvt er9FCQNMLpvP6LR6zW6730cxfE6v2+/4vH5vlPP/gIGCg4SFYH6GiYqLjI2OaIhQCgSUlZQOB5aV CkSTAAADCBBCkwQHQ5kEnA6VCKiXQw8HAp8DCaNCqZxGCgWfAQYNvASfAgYPEakEuA2bSQWVuBGs lK65sKWWB8JImpQGC0OVDteqsQa0AAS35autrwTk2dpDEAgDtQfIQw0FAQABCux6RLBglUhPEHxa uLAZw4XWIOB7GICcQnXiPrlqwJBcBGIAuDn493AALpDWiP8YePhp4EeWABSM/FRASDoB0oosYJiA X0chIIVdZOmSCMyWQhoC1SjkAUmGAsihjMBxocegEYYyJDBkIsMAu3ayXGawrFkmCJ1oZehQHYK3 CLitBHjgAEmcF7kuBbCR4YC9wiCQDIDgwEK9U4kMLXBPabKFBhCADAAhQcOhHo/MreVz4d+XIbMW K/x0X5GFCRo0mKjXcWLDAN/iKzBqalXOoIWOhht24QEEvgZ4nBhqFt+zyJMTSQslMeiUsRw7AHBM NMa9fQF+6olVwS9mC5E5t8l0r4EIEBbugkAAwT5f6khCL5IeFEiPVUly/6T7+kwAPRnh2EU1ReBa eSCdR0r/Rsflt11u1ulVxEUmCbGANOoJAUE4ynV4FnNPOAeSAJbIUwwR0qzFUHYTBfAAVvApSB6A zxEx3SemeQdQBGIJkIRgWymh4wGWAXAKVbX88iJ/EQ4xV4GnfRIZAiRxeOBxjx22DYMsKonVRQFY 0ptnBrjkVZjueaimQSA6ISJM/Uk44VENjkYTVuNNNd5tRPCZVzmwIPmdEhMtcGMAQlQlAIFffiLh nwLCJOOV1jjFkoK22QkANEyqiGUEXnmGi1gPFbXmqYa02cSbbsGFDIVIeMrUbUBSxyRIRwoxkSt7 LiQNqU2CxiR2StwIwIzh0ErSXHGi4ugRkMlGU1LDOleZ/z8MhZPpJ7Uya92icHFDCjoM5fqAZA/l hOq6gqjKBKvzCQrAPuztAmmNfJLKZJE+NmVVjUSQNNCTPPo6zWrDAowEbGESQFJN+T7ULHrpxGvg sHxeHJrCDeDyAHy8zrpQwWwFa8QDHtnzrIVDOJCOuOzG/Ie7S7AajGqqzTjAAv3UovJ1+I4sbGgP LFRAAwtM1C9I7b3FyVxgNTAUJ7XuLLVjCh/xFEsQZAxSp7Ug/XVmRg1b5LGgOtqAjgCE44AvAiiA 9EScbIv216FRiLNqEJwbm2ox8ogPATwrQJJpMieeB81KsMqSEP+VarLd/jrG9ldXjYVeqJANcbnE XCZB6uhvb6GWcdFKySpjlDDpdTZUiW4tatCfVA42nBCkQxE5rzO0uuLA18F4Eo4/1DLeA3BzL+VC DCVu0gwVkBneK0NgwFOL6qS7ALCJO14RkxEBX/JCW5c3S7YkARMw0iSg+6bSfPyQASeJXHvzqR8V mF1bZYbwQoQJngDtMLwudK1jZHgA36SgGrIVwQENQJxZFAizIuAMDRBEoBEO6MABerANBfygCEdI QuCFsIQoTKEKzXLCFbrwhTAMhBgkQMMa2vCGOMyhDnfIwx768IdADKIQh0jEIhrxiEhMohKXyMQm OvGJUIwiDkMAADs= ------=_NextPart_000_0073_01BF3FE4.5CDDDB00--